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Modelling an industrial strategy for inventory management in supply

chains: the ‘Consignment Stock’ case

M. BRAGLIAy and L. ZAVANELLAz*

Stock control in Supply Chain management is of concern here, particularly an
industrial practice observed in the automotive manufacturing context and defined
as ‘Consignment Stock’ (CS). To understand the potentiality of CS policy, an
analytical modelling is offered that refers to the problem of a single-vendor and
single-buyer productive situation. A comparison with the optimal solution avail-
able in the literature is also shown. The conclusion proposes a method that is
useful in identifying those productive situations where CS might be implemented
successfully. Results show how CS policy might be a strategic and profitable
approach to stock management in uncertain environments, i.e. where delivery
lead times or market demand vary over time.

1. Introduction

Several models can be found in the literature for inventory management and
control. More recently, increased interest in Supply Chain topics has seen researchers
address the problem of cooperation between the buyer and vendor, i.e. the two
parties directly interacting in the complex supply mechanism (e.g. see the conclusions
in Goyal and Gupta 1989). For isolated situations and deterministic demand, it is
shown how the optimal solution can be identified by the Economic Order Quantity
(EOQ) model. When applied to productive environments, it allows the vendor to
calculate the Economic Production Quantity (EPQ), although it might be signifi-
cantly different from the buyer’s EOQ. As a result, the two parties enter into nego-
tiation to reach a compromise that involves the price per item and the size of the
batch to be supplied. Of course, the negotiation result depends on the relative
strength of the two parties, creating the basis for an agreement which is optimal
for neither the buyer nor the vendor (Banerjee 1986). From the vendor’s point of
view, a discount policy may be adopted to encourage the buyer to purchase the
material quantity, which maximizes the profit, i.e. a quantity close to the EPQ
(e.g. Lal and Staelin 1984, Monahan 1984, Lee and Rosenblatt 1985, 1986,
Banerjee 1986).

According to the Joint Economic Lot Size (JELS) model (Goyal 1977), the most
competitive approach consists in minimizing the sum of the costs of both the buyer
and vendor. The JELS model may be generalized, introducing the hypothesis of
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the vendor’s discrete production (Banerjee 1986) and removing the hypothesis of the
vendor’s need for selling batch by batch (Goyal 1988).

An essential factor in these models is that the vendor knows the demand and the
basic costs of the buyer (i.e. material holding and order emission costs). According to
Monahan (1984), the buyer’s costs can be estimated by a simple analysis of the size
of the orders previously emitted.

More recently Hill’s (1997, 1999) contributions focused on a model that can
minimize the total costs per year of the buyer–vendor system. The basic assumption
is that the vendor only knows the buyer’s demand and order frequency. Conse-
quently, the model can be applied where there is cooperation between the two
parties, regardless of the possibility that they may belong to the same corporation
or company.

2. Hill’s model

Generally, the vendor’s production is organized in batches, thus incurring set-up
costs. Each batch is delivered to the buyer by a certain number of transport opera-
tions, also made while production is running. Each transport operation determines a
fixed cost, i.e. an order emission cost. The problem of the optimal number of deliv-
eries is of significant relevance and it has been widely discussed with reference to
Hill’s model (Hill 1999, Hoque and Goyal 2000). Both parties incur material holding
costs depending on different rates and the time for which materials are stocked. The
buyer uses the products purchased according to market demand. Thus, the following
notation can be introduced:

A1 batch set-up cost (vendor), e.g. 400 ($/set-up),
A2 order emission cost (buyer), e.g. 25 ($/order),
h1 vendor holding cost per item and per time period, e.g. 4 ($/item�year),
h2 buyer holding cost per item and per time period, e.g. 5 ($/item�year),
P vendor production rate (continuous), e.g. 3200 (units/year),
D demand rate seen by the buyer (continuous), e.g. 1000 (units/year),
n number of transport operations per production batch,
q quantity transported per delivery, from which the production batch size

Q ¼ n�q,
C average total costs of the system per time unit, being a function of n and q.

The values reported refer to Goyal’s example (1988), adopted as reference. It is
also assumed that P>D and h2> h1. The former hypothesis is obvious, while the
latter is linked to the common opinion that an item increases its value while descend-
ing the distribution chain. As a consequence, goods are generally kept in the vendor’s
warehouses until the buyer’s request for a further shipment. Figure 1 shows the trend
of the stock levels in the case of five shipments per batch produced (two of the five
shipments planned take place while the vendor produces a single batch). In this case:
Q ¼ 550 (items), n ¼ 5 and q ¼ 110 (items).

According to Hill’s model, the total costs are:

C ¼ ðA1 þ nA2Þ
D

nq
þ h1

Dq

P
þ
ðP�DÞnq

2P

� �
þ h2 � h1ð Þ

q

2
: ð1Þ

Function C may be differentiated with respect to q, thus obtaining C’(q)
function. Once C’(q) is set equal to zero, the batch size q* able to minimize the
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total costs C is found:

q� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA1 þ nA2Þ

D

n

� ��
h1

D

P
þ
ðP�DÞn

2P

� �
þ
h2 � h1

2

� �s
ð2Þ

for a minimum cost C(q*) equal to:

Cðq�Þ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA1 þ nA2Þ

D

n

� �
h1

D

P
þ
ðP�DÞn

2P

� �
þ
h2 � h1

2

� �s
: ð3Þ

3. Consignment Stock strategy

The main strategic finding implicit in Hill’s model is that the cooperation between
the buyer and vendor gives a far greater benefit than a non-collaborative relation-
ship. A different policy, observed and applied in a manufacturing company, will be
described below. According to industrial practice, it will be defined as Consignment
Stock (CS) and it requires a continuous exchange of information between the two
parties. The most radical application of CS may lead to the suppression of the
vendor’s inventory, as this party will use the buyer’s warehouse to stock material.
This warehouse is close to the buyer’s production line so that the material may be
picked up when needed. Furthermore, the vendor will guarantee that the quantity
stored in the buyer’s warehouse will be kept between a maximum level (S) and
a minimum one (s), also supporting any additional costs induced by stock-out

Figure 1. Hill’s model: level of stocks at the buyer and vendor inventories.
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conditions. The buyer will take from the store the quantity of material necessary to

cover the production planned and the vendor will be paid up to a daily frequency,

thus transmitting to the vendor fresh and immediate information on the consump-

tion trend. The following brief comments describe some of the various tasks implicit

in the CS policy.

The buyer:

. has a constantly guaranteed minimum stock level, i.e. s;

. does not have to take care of order emission (minus administrative costs);

. pays for goods only when they are effectively used (minus the quantity of

‘frozen’ capital); and

. does not pay for capital-linked holding costs, as they are chargeable to the

vendor.

The vendor:

. has access to the final demand profile, thus by-passing the filter determined by

the buyer’s orders, as occurs in the classic approach;

. has the opportunity to empty his warehouse, thus using it for other tasks

(storing raw materials, installing additional productive capacity etc.). Of

course, the extent of this advantage depends on the relative values of level S,

the production rate P and the order size Q; and

. may organize his production campaigns differently, being less closely linked to

the buyer’s requirements.

In addition, another important benefit for the entire supply chain system must be

highlighted. It is well known (e.g. Chen et al. 2002) that the strategic partnership

between the buyer and vendor (as implicit in the CS approach) allows the reduction

or elimination of the bullwhip effect, i.e. of the increase of demand variability as one

moves up a supply chain.

Nevertheless, the most evident difference between Hill’s model and the CS

approach lies in the location of the stocks, which are preferably located in the

vendor’s warehouses in the first case, instead of the buyer’s, as CS management

implies. It is evident that a deterministic environment implies the optimal perfor-

mance of Hill’s model, i.e. a stable demand together with predictable lead times

works in favour of a policy invoking the maintenance of goods where holding

costs are lower and transport may be delayed until goods are required. The following

sections will investigate the influence of demand and lead time variability on the

performance of the two policies.

A brief comment on s and S levels is needed, as the buyer’s and vendor’s interests

are conflicting ones.

The vendor:

. will try to set the s level as low as possible, so as to reduce the cost of the safety

stock that he himself must guarantee; and

. will try to set the S level as high as possible, so as to exploit his production

capacity until the buyer’s warehouses are full.

The buyer:

. will try to set a higher s level, so as to reduce the stock-out probability (even if

penalties are chargeable to the vendor); and
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. will try to set the S level as close to the s level as possible, so as to reduce the
space occupied and the relative costs linked to investment in structures.

Of course, the need for negotiating the s and S levels represents an opportunity for
profitable cooperation between the two parties.

4. Analytical model of CS policy

As in Hill’s model, the vendor incurs set-up costs and produces according to
batches. Deliveries require various transport operations, some of which are carried
out while production is running (figures 1 and 2). The buyer and/or the supplier are
subject to a fixed cost for order emission and transportation, this being assumed as
independent of the quantity q to be transferred. Both of the parties incur holding
costs, although at different rates.

When applying the CS technique in its simplest form, items are delivered to the
buyer whenever the product level in the vendor’s stock reaches quantity q, thus
obtaining the profiles shown in figure 2 (Q ¼ 512 (items), n ¼ 4 and q ¼ 128
(items)).

The CS model described in figure 2 also matches the industrial case, which
originated the present study. The vendor’s behaviour proposed in figure 2 was gen-
erally observed as well as being a ‘natural’ one. In fact, a strategic advantage of the
vendor lies in the use of the buyer’s warehouse space. Thus, the supplier aims to keep
his stock level as low as possible, according to the limitations imposed by the S level.
Of course, various ways of behaviour on the part of vendors was observed, but the

Figure 2. CS model: level of stocks at the buyer and vendor inventories.
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one adopted is quite significant, as it also emphasizes the possible impact of the CS
approach on the buyer’s stocks. Another feature worth noting about the industrial
case observed, is that the s level is frequently set to zero.

The vendor’s average costs per year have two contributing factors:

Set-up cost : Cv
s ¼ A1

D

n � q
ð4Þ

Holding cost : Cv
m ¼ h1 �

q �D

2 � P

� �
: ð5Þ

In formula (5), contribution qD/2P is the product between the average quantity in
the store, q/2, and the time D/P during which the level of the vendor’s stock is other
than zero. Buyer’s costs are:

Order emission cost: Cb
e ¼ A2

D

q
ð6Þ

Holding cost: Cb
m ¼

h2
2

n � q� ðn� 1Þ �
q

P
D

� �
: ð7Þ

The total holding cost is determined by h2 multiplied by the average inventory level,
as obtained by basic geometric considerations, being equal to the average between
the maximum and minimum level (zero). The total costs for the system are:

C ¼ A1 þ nA2ð Þ �
D

n � q
þ h2

D � q

P
þ n � q

P�D

2 � P

� �
� h2 � h1ð Þ

q �D

2 � P

� �
ð8Þ

and they can be differentiated with respect to q and setting the derivative to zero,
thus obtaining the optimal quantity q* which minimizes the total costs themselves:

q� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A1 þ n � A2ð ÞðD=nÞ

h2ððD=PÞ þ nðP�DÞ=ð2 � PÞÞ � h2 � h1ð ÞðD=2 � PÞ

s
ð9Þ

giving a minimum cost equal to:

Cðq�Þ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A1 þ nA2ð Þ

D

n

� �
h2

D

P
þ n

P�D

2P

� �
� h2 � h1ð Þ

D

2P

� �
:

s
ð10Þ

Of course, the maximum level of the vendor’s stock is equal to q, while the buyer’s
may be evaluated by the following:

Magbmax ¼ n � q� n� 1ð Þ
q �D

P
: ð11Þ

According to the behaviour adopted by the vendor (figure 2), the Magbmax and
S values clash, or S>Magbmax.

4.1. Numerical example
When adopting data from Goyal’s example, the formulae discussed above lead

to the results shown in figure 3. The minimum of the total costs is found for
2034.9 ($/year), for n ¼ 2, 4 and 6 versus themaximum levelS of the buyer’s inventory.

This makes it possible to calculate the minimum total cost with reference to the
number of shipments, too. Thus, the problem of the optimal number of deliveries to
be carried out is numerically solved, leaving its analytical solution to further
research.
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5. CS model for delayed deliveries

The analysis of the basic CS model highlights a possible inefficiency of the model

itself, due to the relevant value that the maximum level of the buyer’s inventory may

reach, even if for limited periods. A possible solution is offered by delaying the last

delivery until the moment when it no longer determines a further increase in the

maximum level already reached. The situation is described by figure 4, where R is the

lapse of time introduced to delay the last delivery.

The vendor’s average costs are the sum of two factors:

Set-up cost: Cv
s ¼ A1

D

nq
ð12Þ

Holding cost: Cv
m ¼ h1

qD

2P
þ q

P�D

nP

� �
, ð13Þ

where (q�D)/(2�P) is the contribution of the n triangles, and q.(P�D)/(n�P) comes

from the area corresponding to the delayed q. The buyer’s costs become:

Order emission cost: Cb
e ¼ A2

D

q
ð14Þ

Holding cost: Cb
m ¼ h2

Dq

P
þ nq

P�D

2P
�
qD

2P
� q

P�D

nP

� �
: ð15Þ

Figure 3. Total costs for CS policy with different n and S values.
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Once again, total system costs may be evaluated:

C ¼ A1 þ nA2ð Þ
D

nq
þ h2

Dq

P
þ nq

P�D

2P

� �
� h2 � h1ð Þ

qD

2P
þ q

P�D

nP

� �
ð16Þ

and setting the derivative to zero, the minimizing quantity q� is found:

q� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A1 þ nA2ð ÞðD=nÞ

h2 ðD=PÞ þ nðP�DÞ=ð2PÞÞð Þ � h2 � h1ð Þ ðD=2PÞ þ ðP�DÞ=ðnPÞð Þ

s
ð17Þ

offering a minimum total cost C(q*) equal to:

Cðq�Þ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A1 þ nA2ð Þ

D

n

� �
h2

D

P
þ n

P�D

2P

� �
� h2 � h1ð Þ

D

2P
þ
P�D

nP

� �� �s
: ð18Þ

The maximum level of the buyer’s stock is:

Magbmax ¼ n� 1ð Þq� n� 2ð Þq
D

P
: ð19Þ

The model discussed may be regarded as a particular example of a more general

case, i.e. the model with k delayed deliveries (CS-k). In this case, the analytical

Figure 4. Buyer’s and vendor’s inventory levels when delaying the last delivery.
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relationships become:

Set-up cost: Cv
s ¼ A1

D

nq
ð20Þ

Vendor’s holding cost: Cv
m ¼ h1

qD

2P
þ q

P�D

nP

kþ 1ð Þk

2

� �
, ð21Þ

where the term ((k þ 1)k)/2 equals
Pk

j¼1 j.

Order emission cost: Cb
e ¼ A2

D

q
ð22Þ

Buyer’s holding cost: Cb
m ¼ h2

Dq

P
þ nq

P�D

2P
�
qD

2P
� q

P�D

nP

kþ 1ð Þk

2

� �
: ð23Þ

The total costs of the system are given by the sum of the (20–23) contributions, thus
obtaining:

C ¼ A1 þ nA2ð Þ
D

nq
þ h2

Dq

P
þ nq

P�D

2P

� �
� h2 � h1ð Þ

qD

2P
þ q

P�D

nP

kþ 1ð Þk

2

� �
:

ð24Þ

Once again, by differentiating with respect to q and setting the function obtained
equal to zero, the optimal quantity q* is found to minimize total costs:

q� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A1 þ nA2ð ÞðD=nÞ

h2 ðD=PÞ þ nðP�DÞ=ð2PÞð Þ � h2 � h1ð Þ ðD=2PÞ þ ðP�DÞ=ðnPÞ ððkþ 1ð ÞkÞ=2ð ÞÞ

s

ð25Þ

and obtaining a minimum cost equal to:

Cðq�Þ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A1 þ nA2ð Þ

D

n

� �
h2

D

P
þ n

P�D

2P

� �
� h2 � h1ð Þ

D

2P
þ
P�D

nP

kþ 1ð Þk

2

� �� �s
:

ð26Þ

Finally, the maximum level of the buyer’s stock will be:

Magbmax ¼ n� kð Þ � q� n� k� 1ð Þ � q �
D

P
ð27Þ

under the obvious condition of n� k. In particular, it should be highlighted that:

. if k ¼ 0, the basic CS model is obtained;

. if k ¼ n� 1, the CS-k model matches Hill’s approach, i.e. the vendor keeps the
entire production in its warehouse and a quantity equal to q is delivered only
when the buyer’s stock is equal to zero; and

. the total cost may be properly minimized by adjusting n (Peterson and Silver
1979, Hoque and Goyal 2000) for the single-buyer single-vendor situation,
with constrained transport capacity.

5.1. Numerical example
For the values already assigned, table 1 offers the total costs per year while

varying the number of transport operations n and the number of delayed deliveries
k. This numerical approach is used in the absence of the analytical model, enabling
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the identification of the number of shipments which minimize the total cost. For the
column with k ¼ 0, the basic CS model is adopted. Other columns refer to CS-k
models.

It is interesting to see how Hill’s model results lie on the main diagonal of the
matrix. Comparing the detailed results of the four policies (Hill, CS, CS-1 and CS-2),
table 2 may be drawn up.

Cases described by CS-k models with k>2 were never best (other than when they
coincided with Hill policies) as, for the data given, they did not offer further
improvements with respect to the policies mentioned.

Figure 5 shows the behaviour of costs per year as a function of the S level, i.e. the
maximum level of the buyer’s inventory. It should be highlighted that the non-
smooth behaviour of figure 5 curves is a consequence of the non-integer nature of
n value.

Of course, Hill’s model offers the best result, i.e. the minimum overall cost.
However, let us consider the case of a buyer who dedicates a larger space to material
stocking, together with a minimum level of material to be maintained, thus accepting
a (s, S) range for stock level. In such a case, figure 5 identifies areas of convenience
for different CS-k policies. Thus, in response to the question why should a buyer

k

n 0 1 2 3 4 5

1 CS, Hill
2305; 369

2 CS CS-1, Hill
2088; 364 2012; 224

3 CS CS-1 CS-2, Hill
2039; 369 2003; 267 1929; 164

4 CS CS-1 CS-2 CS-3, Hill
2035; 376 2014; 295 1970; 214 1904; 131

5 CS CS-1 CS-2 CS-3 CS-4, Hill
2049; 384 2035; 316 2007; 249 1963; 181 1903; 110

6 CS CS-1 CS-2 CS-3 CS-4 CS-5, Hill
2073; 392 2063; 333 2042; 275 2011; 216 1969; 157 1915; 096

Table 1. Total cost and maximum level of buyer’s stock for a different number of deliveries
and delayed supplies.

Hill CS-2 CS-1 CS

Optimal production batch size 550 492 474 492
Number of deliveries per batch 5 3 3 4
Maximum level of the vendor stock 352 328 158 123
Maximum level of the buyer stock 110 164 267 376
Total costs per year ($/year) 1903 1929 2003 2035
Set-up costs ($/year) 725 813 844 813
Transport costs ($/year) 227 152 158 203
Vendor holding costs ($/year) 678 554 244 77
Buyer holding costs ($/year) 273 410 757 942

Table 2. Detailed comparison of strategies’ performance.
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propose and accept such an approach to manage his inventory, the answer is to face
demand and/or lead time fluctuations.

6. Stochastic case

To enhance the comparison between the Hill and CS models, a frequent and
realistic situation was examined, i.e. the case of stochastic demand. It is plain that
Hill’s approach offers the lowest costs in a deterministic environment. However, an
uncertain environment may modify the situation and the CS approach may prove to
be a profitable one.

It is known that demand uncertainties are generally faced by providing safety
stocks and so, to compare the two policies, their ‘service levels’ will be evaluated. To
this end, let us define:

. service level SL as the expected fraction of demand satisfied over the period
considered. Of course, quantity (1�SL) will be the fraction of demand lost or
backlogged; and

. Bss as the number of items in stockout, during the interval between two
successive orders (cycle) and given a safety stock equal to ss.

According to Winston (1994), the average amplitude of each stockout is E(Bss).
As a consequence, the expected stockout per year is E(Bss)�Ca , where Ca is the
number of cycles in one year, and the following must hold:

1� SL ¼
E Bssð Þ � Ca

E Dð Þ
, ð28Þ

Figure 5. Total system costs for different policies and S levels.
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where E(D) is the average demand per year. The expected E(Bss) can be evaluated if
the distribution of the demand during the lead time (X variable) is known. If it is
normally distributed with mean E(X) and standard deviation �X, then the safety
stock ss ¼ y��X and it will determine �X.NL(y) shortages during the lead time.
The values of the normal loss function NL(y) are tabulated (e.g. Peterson and
Silver 1979) and, consequently, it is possible to evaluate E(Bss) as follows:

EðBssÞ ¼ �X :NL
ss

�X

� �
: ð29Þ

The total costs of the system Ct will be equal to those of the deterministic cases, Cd,
plus the safety stock holding costs, i.e.:

Ct ¼ Cd þ h2 � ss: ð30Þ

It should be emphasized that the CS approach implies the direct control of the
buyer’s stock by the vendor, i.e. the order emission cost A2 is lower than in the
traditional situation. This fact will be neglected in the remainder of the text, where
CS and Hill’s model will be compared according to their best performance (i.e. CS-3
with n>4 so as not to have a Hill policy).

7. Case of stochastic demand

According to the parameter values previously assigned, let us consider:

. stochastic demand described by a normal distribution with mean E(D) equal to
1000 (pieces/year) and a standard deviation �D between 0 (deterministic case)
and 44.72 (pieces/year) (i.e. variance equal to 2000); and

. delivery lead time equal to zero.

With reference to the first point above, the �D adopted are undoubtedly low with
respect to the mean. However, they are sufficient to show the CS performance even in
a situation where the approximation of a sufficiently regular demand to a determin-
istic one may be considered as a reasonable assumption and, consequently, Hill’s
hypotheses may apply to the case. Figure 6 shows the levels of the vendor and buyer
stocks during the production of a batch. The number of deliveries per batch n is
equal to five, thus obtaining a minimum cost also for the CS policy.

The graph also plots the minimum and maximum level that the buyer’s stock may
reach because of demand variability. When adopting the CS approach, it is evident
that the stockout probability is relevant only for the first delivery, as the stock level is
sufficiently high in the rest of the cycle (period of time between the production of two
consecutive batches). It should be noted that the delivery lead-time is null, but the
batch is to be produced, so that there exists a ‘system lead time’ other than zero. The
system lead-time lts is equal to lts ¼ q/P and the number of cycles Cy in a year is
Cy ¼ EðDÞ=ðn � qÞ. In the case described, lts ¼ 0.0334 (years), i.e. 12 (days), and
Cy ¼ 1.87 (cycles/year). The standard deviation of demand during the lts interval is:

�X ¼

ffiffiffiffiffiffiffiffiffiffi
�2
D

q

P

r
¼ �D

ffiffiffiffi
q

P

r
: ð31Þ

It is also possible to evaluate the behaviour of Hill’s model for a normally distributed
demand (figure 7).

The same figure 7 refers to Hill’s model optimal situation (batch equal to 550
(units) and five deliveries per batch): because of demand fluctuation, the arrival of
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Figure 7. Hill’s model and normally distributed demand.

Figure 6. Buyer’s and vendor’s stocks for a stochastic demand and CS-3 policy.
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each delivery is a critical situation, as a stockout may occur. In such a case, the
system lead-time lts is the lapse of time between two consecutive deliveries, i.e.
lts ¼ q=EðDÞ ¼ 40 ðdaysÞ, and Cy ¼ EðDÞ=q ¼ 9:09 ðcycles=yearÞ.

The standard deviation of demand during the system lead-time is:

�X ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
�2
D � q

E Dð Þ

s
¼ �D

ffiffiffiffiffiffiffiffiffiffiffi
q

E Dð Þ

r
ð32Þ

and it is possible to calculate the safety stock required when adopting Hill’s model.
When figures 6 and 7 are compared, it also emerges that:

. in Hill’s model (figure 7), the safety stock is constantly required during each
period, because of the saw-tooth aspect of the buyer’s stock; and

. in the CS approach (figure 6), the safety stock is really necessary only during
the first deliveries, i.e. when the buyer’s stock is at its lowest levels.
Nevertheless, in the following, the safety stock will be considered as applied
during each period. Its value may be regarded as the starting basis for the s
level bargaining activity implicit in a CS agreement.

7.1. Numerical example
Let us assume a service level SL ¼ 99.98% and a delivery lead time equal to zero.

SL has been set to an unrealistically high value to emphasize the CS performance,
given the data set assumed from Goyal’s example. However, the same effect could be
obtained with the more frequent case of the combination of a lower service level and
higher demand variability. Formulae proposed in section 6 offer the results shown in
figure 8.

As the assigned standard deviation increases, Hill’s model requires an increased
safety stock, with respect to the CS approach, to guarantee the service level SL. Thus,
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Figure 8. Safety stocks for different models and demand standard deviations.
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total costs rise (figure 9). Figure 9 shows how, for a demand standard deviation
greater than 30, the CS-3 model offers lower costs than Hill’s model. The results
obtained have been verified by simulation experiments, which are not reproduced for
the sake of brevity.

Safety stocks may also be calculated for different service levels and demand
standard deviation �D: for an assigned SL there exists a �D (�limit) so that Hill’s
model is to be preferred to CS when �D<�limit. Figure 10 summarizes the whole set
of results obtained, thus showing a borderline that distinguishes the area of Hill’s
model convenience from the CS area of outperformance.
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Figure 9. System costs, including safety stocks, versus demand standard deviation.
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8. Conclusions

Starting from an industrial practice observed in a manufacturing company, the
present study described a policy for the management of stocks in a Supply Chain,
named Consignment Stock (CS). To evaluate its performance, an analytical model
was developed and a comparison made with Hill’s model. The results obtained
helped in understanding the CS mechanism, also offering a procedure for identifying
those situations where it could be adopted successfully. Further work on the subject
might help in the complete understanding of the CS potential. In particular, inves-
tigations are in course to evaluate the proper s and S levels and to examine the cases
of multibuyer and multivendor environments.
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