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Abstract

The study originated from an industrial case study in the field of steel production, but it presents a larger interest, as

many other manufacturing fields have similar concerns (e.g. foundries, food, textile and paper industries). A significant

phase of steel manufacturing is the product cooling (likewise, drying in paper and textile production, or maturing in

food production). This phase may be completed in different ways, but (1) it must be carried out in the finished product

warehouse and (2) it must meet both production optimisation and customer needs. The latter requirement acquires a

strategic relevance in JIT environments. The present study proposes a mathematical model to find the optimal

production schedule of steel billets, based on the relevant parameters of the productive system (set-up and processing

times, demand profile). In the industrial case examined, the negative impact of holding costs on cash flows is also linked

to the space required by the cooling process, which depends on the production schedule adopted. In other words, the

finished product storage can be considered a part of the manufacturing cycle and impacts on it. In the case of steel

plants operating in JIT environments, the warehouse must be promptly emptied and carefully managed to exploit the

available space. Thus, the effect of inventory costs is examined in a production–inventory system with finite capacity,

where products are made to order and share the same manufacturing facility. The study is completed by an

experimental analysis to investigate the effect of variations in the relevant parameters of the problem.

r 2004 Elsevier B.V. All rights reserved.
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1. Introduction

This case examined here refers to the production
planning of a ‘‘mini steel plant’’, where the
continuous increase in productivity led to pro-
blems of space in the final product warehouse. In
e front matter r 2004 Elsevier B.V. All rights reserve
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ng author.
this area, billets are cooled before customer
withdrawal. The final aim of the present work is
to establish the optimal production sequence of
the billets, ordered by the customers, while taking
into account the limited space available in the
warehouse.

The utilisation of mathematical methods for
production optimisation in steel plants is not new.
d.
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Tibor (1958) introduced a linear mathematical
model to optimise the mix of raw materials and
energy consumption. Subsequently, several con-
tributions involving mathematical programming
were published on the same problem. Never-
theless, existing research does not consider in
detail the problem of the mix of raw materials: it is
not a salient feature of mini-steel plants with
electrical furnace, as the charge is composed by
iron scraps and alloy elements. This study focuses
on the optimisation of the production schedule, i.e.
the billet type to be produced and in period of the
time horizon. A recent survey on this topic may be
found in Tang et al. (2001), who show how
proposed models refer to the optimisation of the
typical stages of steel production, i.e. steel making
(SM), continuous casting (CC) and hot rolling
(HR). The optimisation may be carried out for the
whole system or a part of it. Our contribution is
focused on the CC phase, a unique phase of mini-
steel plants (the final products are billets, differing
in quality, section and length). The billet ware-
house will be considered as a part of the
productive cycle, thus introducing an original
problem of industrial relevance.

According to Tang et al. (2001), the following
approaches were adopted for production planning
in steel plants:
�
 OR (Operational Research);

�
 AI (Artificial Intelligence):

J Expert Systems;
J Intelligent search methods, such as GA

(Genetic Algorithm), SA (Simulated Anneal-
ing) and TS (Tabu Search);

J Constraint satisfaction;

�
 Human–machine coordination methods

�
 Multi Agent methods

In order to solve the problem, a mixed integer
linear model will be proposed (Section 5). In this
regard, Lally et al. (1987) introduced a mixed
integer linear model for the solution of the billet
scheduling problem in CC. They consider a
simplified model for a steel plant. Mohanty and
Singh (1992) proposed a hierarchical system with
two levels for production planning. The problem is
formulated as a goal-programming model, solved
by a multi-objective dynamic algorithm. The result
is an aggregate plan guaranteeing the best use of
the available resources. Chen and Wang’s (1997)
linear model is developed in the Supply Chain
perspective, thus looking for the optimal produc-
tion plan in a given context of semi-finished or raw
material supply and finished product distribution.
However, the optimal solution of the problem is
found with a reduced number of variables and
heuristics are not presented for a more realistic
solution. In Kalagnanam et al. (2000), the
influence of a billet warehouse is introduced into
the production planning of the CC process.
Firstly, demand is satisfied by surplus billets
stocked in the warehouse (if any) and, subse-
quently, by scheduling the remaining orders. The
problem is formulated as a bicriteria multiple
knapsack model with additional constraints,
solved with a heuristic. In Kapusinski and Tayur
(1998), a model for production optimisation is
proposed, where the relationship between the
system capacity (and, therefore, the warehouse)
and the cost/profit deriving from its utilisation is
introduced and discussed. Finally, Tang et al.
(2002) enhance their previous model (Tang et al.,
2000) by a linear mixed integer model. The
integrated optimisation of SM and CC production
considers multiple units available in each of two
stages. The model proposed is solved by a heuristic
based on Lagrangian relaxation.
2. The manufacturing process

The CC technology was developed in the 1970s.
Today, it is widely used by Italian steel makers.
The lack of iron mines prompted the development
of production processes based on the ferrous scrap
fusion by Electric Arc Furnaces (EAF). The billet
CC process starts with the introduction of scraps
into the EAF. Then, Ferro-alloys are added and
degassing is carried out by the injection of argon
or nitrogen at the Ladle Furnace. At the end of the
fusion process, molten steel is moved in the ladle
and, from it, to the tundish, where the metal-static
head is kept constant to guarantee a regular
outflow in the operating lines (the steel plant
considered has five parallel lines). A bottomless
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copper container is placed under the tundish and
cooled by demineralised water circulation (mold).
The formation of a thin solid layer allows the
metal to sustain itself. At the mold exit, the billet is
cooled by a jet of water before cutting. The CC
machine operates continuously, without interrup-
tion, until the ladle is completely emptied. It must
be replaced promptly, with a full one, so that
production is managed with a minimum number
of interruptions. A schematic representation of the
CC process is shown in Fig. 1.

The production process can be summarised as
follows: (1) preparation of the iron scraps and
alloy elements (EAF load); (2) fusion; (3) CC of
the billets, (4) billet cooling. Billet length ranges
from 1.6 to 12m; sections are square, with sides of
100, 115, 120, 130, 140 and 160mm. Different
qualities of steel are produced (approximately, 100
types). Production is continuous, using three shifts
per day over the whole week, for a total of 330
working days per year. The EAF capacity is
equal to 65 tons, with a 6200 mm diameter.
The maximum production is estimated to be
1600–1700 tons per day, i.e. a potential output of
about 600,000 tons per year.
Fig. 1. Continuous billet casting process.
3. The billet warehouse

The warehouse for billet storing and cooling is a
57� 26 m2 area, where an overhead crane
equipped with an electromagnet transports the
products. The warehouse size, further reduced
because of billet handling, represents an important
constraint (billets cannot be stocked anywhere
else). Therefore, the initial study focussed on the
possible effects of enlarging the warehouse. At
present, if customer orders are small (i.e., few
casts), billets are arranged in a single layer, thus
cooling rapidly (o12 hours) to allow truck or
railway transportation. If demand is large (i.e.,
several casts), billets are stocked in multiple layers
and cooling times increase (roughly, over 12 hours
for each layer added). Of course, there exists a
limit to the maximum number of layers, depending
on the length and side of the billets (the absolute
maximum is 13 layers, for billets 115 mm side and
2m long).
4. The industrial context

The analysis of production data (years
2000–2001) showed how billet orders range from
a few to dozens of thousands of tons. Customers
were classified according to the tons ordered per
year, thus obtaining the ABC graph in Fig. 2. The
graph shows how one customer accounts for
almost half the total demand and several custo-
mers order smaller quantities of steel.

The distribution of the order size is shown in
Fig. 3 (wide intervals are given due to industrial
reserve).

It should be highlighted that the company
produces a wide range of different steel types.
Their quality depends on the chemical composi-
tion (i.e. C, Mn, Si, P, S, Cu, Cr, Ni, Mo, Sn and
Al content) and production scheduling is influ-
enced by the compatibility of the alloy produced.
Therefore, steel qualities were categorised into
nine homogeneous groups (Fig. 4), each contain-
ing those materials which can be produced
consecutively without quality problems.

If the schedule implies the consecutive produc-
tion of steel belonging to incompatible groups,
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Fig. 2. ABC analysis of customers.
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Fig. 3. Order size.

Group 1 2 3 4 5 6 7 8 9 

1 1 2 2 NC NC NC NC 3 NC 

2 2 1 2 NC NC NC NC NC NC 

3 2 2 1 2 3 NC NC NC 2 

4 NC NC 2 1 NC 3 NC NC 2 

5 NC NC 3 3 1 3 NC NC 3 

6 NC NC NC 3 3 1 NC NC NC 

7 NC NC NC NC NC NC 1 NC NC 

8 3 NC NC NC NC NC NC 1 NC 

9 NC NC 2 2 3 NC NC NC 1 

Legend 

1 High compatible

2 Compatible 

3 Low compatible

NC Incompatible 

Fig. 4. Compatibility between steel groups.
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there is a need to degrade the first billets of the new
casting. This practice is necessary because of the
presence of alloy elements in the CC system during
the transition period between two castings. There-
fore, the casting sequence of two incompa-
tible groups implies that about 10 tons of billets
are sold at 30% lower price, thus resulting in a
profit loss.
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5. Mathematical formulation of the problem

Linear programming (LP) is a widely used
technique of mathematical programming and
several applications to real-world problems are
quoted in the literature. Our first aim was to
develop a linear model, even if this may introduce
some limitations in to the detailed formulation of
the problem, it allows efficient solution by
standard linear programming software packages.
The notation adopted is shown below:

i billet type index (i ¼ 1; . . . ; n);
j index of the planning horizon day

(j ¼ 1; . . . ;m);
h horizon of production planning (28 days);
li length of the ith billet (from 1.6 to 6 m);
si side of the square section of the ith billet

(115, 120, 130, 140, 160 mm);
NBCi number of the ith billet produced for each

cast (maximum capacity);
layeri number of layers of the ith billet stack;
Pt production time for each cast (40 min-

utes);
Hd hours available for production (24 hours/

day for 330 days/year);
Ic average holding cost (referred to the cost

of one cast stocked for 1 h in the ware-
house);

Pr average profit of one cast;
St average time for the CC process set-up;
Oij quantity (casts) of the ith billet ordered

for the jth day;
LInv warehouse length (57 m);
HInv warehouse width (26 m);
Ioi starting inventory of the ith billet;
coolik cooling time (days) of the ith billets

(minimum time required between
production and transport to the custo-
mer). This value depends on the number
of possible levels (layeri) for each ith billet
type;

M large number (larger than the maximum
number of casts that can be produced per
day);

auxi auxiliary variable for calculating the space
occupied by a cast of the ith billet:
auxi ¼ li=ðHInv � layeriÞ;
Cs penalty cost due to orders, scheduled for
the sth week but fulfilled later (s=
1, 2, 3, 4), i.e. assuming the possibility of
lateness in delivery;

Pij variable; number of casts of the ith billet
produced in the jth day;

I ij variable; number of casts of the ith
billet in the warehouse during the
jth day;

Sij variable; number of casts of the ith
billet delivered to the customer in the jth
day;

yij binary variable; set-up of the EAF for the
production of the ith billet type in the jth
day

yij ¼
1 if billet i is produced in day j;

0 if billet i is not produced in day j:

�

The model

Objective function:

MAX
Xn

i¼1

Xm

j¼1

½Pr � Sij � I ij � Ic � Hd	

"

�C1 �
Xn

i¼1

Xh=4
j¼1

ðOij � SijÞ � C2 �
Xn

i¼1

Xh=2
j¼h=4þ1

ðOij � SijÞ

�C3 �
Xn

i¼1

X3�h=2
j¼h=2þ1

ðOij � SijÞ � C4 �
Xn

i¼1

Xh

j¼3�h=4þ1

ðOij � SijÞ

3
5:

Constraints:

Xn

i¼1

½Pt � Pij þ St � yij	pHd 8 j ¼ 1; . . . ;m; ð1Þ

I i1 ¼ Ioi þ Pi1 � Si1 8 i ¼ 1; . . . ; n; ð2Þ

I ij ¼ I i;j�1 þ Pij � Sij 8 i ¼ 1; . . . ; n; j ¼ 2; . . . ;m;

ð3Þ

Xh

j¼1

Pij ¼
Xh

j¼1

ðOij � IoiÞ 8 i ¼ 1; . . . ; n; ð4Þ

Xh

j¼1

Sij ¼
Xh

j¼1

Oij 8 i ¼ 1; . . . ; n; ð5Þ
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X
doj

Sidp
X
doj

Oid ; 8 i ¼ 1; . . . ; n; j ¼ 2; . . . ;m;

ð6Þ

Si;jþcoolikpPij ; 8 i ¼ 1; . . . ; n; j ¼ 1; . . . ;m; ð7Þ

yijX
Pij

M
8 i ¼ 1; . . . ; n; j ¼ 1; . . . ;m; ð8Þ

Xn

i¼1

I ij � si � NBCi � auxipLInv 8 j ¼ 1; . . . ;m: ð9Þ

The objective function aims to maximise the
profit of billet sales, taking into account the
holding costs. Therefore, indirectly, it aims to
minimise the billet cooling time. The objective
function contains four additional terms account-
ing for the orders unsold within the assigned week
(delayed delivery). In particular, a decreasing
penalty cost (C14C24C34C4) is assumed from
the first to the fourth week of the time horizon.

Basically, three cost types are introduced.
�
 Holding costs: they are directly proportional to
the time interval T during which a billet remains
in the warehouse, even if it is still cooling;
�
 Production costs, which are classified as follows:
J the cost of raw materials;
J the energy cost, which depends on the quality

of the iron scraps used and on the quality of
the steel;

J the cost of direct and indirect labour;
J the cost of ordinary and extra-ordinary

maintenance.

�
 Costs due to delayed orders, as already men-

tioned.

It should be emphasised that costs are coherent
with the case observed, although they are not
presented due to company confidentiality needs.
The constraint set (1) represents the productive
time available per day (set-up plus production
times must be less than 24 hours). The quantity of
material in the warehouse, per type and day, is
taken into account by (2) and (3) constraints.
Constraint (4) imposes a limit on the production in
the planning period (equal to the sum of the orders
in the same period minus the number of billets
initially available in the warehouse). In the
planning horizon, the equality between sold and
ordered billets is imposed (constraint (5)), whereas
constraint (6) guarantees that the quantity of sold
billets up to the dth day (d=1,y, H) is smaller or
equal to the quantity to be delivered (deliveries
cannot be anticipated). The sets of constraints (7)
and (8) are introduced to ensure a linear model.
The former implies that the sales of the ith product
in the jth day correspond to the billet production
in the (j � cooli) day. The latter is introduced to
assign the value of the Boolean variable yij.
Finally, the last constraint (9) imposes a limit on
the warehouse capacity: billets stored for cooling
cannot exceed the space available. Consequently,
the production of billets will be limited by this
constraint.
6. Implementation and solution of the model

A VBA programme was developed to generate
orders coherent with the demand profile of the
company: they will represent the input for the
model. In the specific industrial case considered,
the linear model proposed (Section 5) requires
8960 variables and 9176 constraints. It was
implemented in the MPL language and solved by
a CPLEX 6.6.0 MIP optimiser. The output gives:
1.
 billet type (and quantity) to be produced for
each day of the planning horizon;
2.
 completion date for each order;

3.
 number of days required to complete each billet

order;

4.
 quantity of billets stored in the warehouse;

5.
 production to be sold per day;

6.
 final profit.

The planning horizon (4 weeks) may be easily
modified. As usual, computational time is a
strategic parameter to be considered in evaluating
the performance of the model. Simple cases are
solved in a few seconds. On the other hand, if the
set of orders uses up most of the available
capacity, the solution procedure may find diffi-
culty in quickly identifying a feasible solution, thus
the computational effort may take several hours.
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It should be emphasised that the number of
stack layers (indirectly, the cooling time of stacks)
should be a decisional variable. Such a formula-
tion adds to the model complexity and the
consequent computational time. The results of
various experiments are presented to show the
behaviour of the model and to introduce an
efficient solving heuristic.
23.612
0.6 0.65 0.7 0.75 0.8 0.85 0.9

System saturation

Fig. 7. Profit trend with varying system saturation.

7. Computational tests

Different demand profiles were generated ran-
domly, according to the industrial situation
examined (Section 4). At first, the profit trend
was investigated while varying the warehouse size
(Fig. 5). Up to certain value, an increasing
relationship between the dimension of the ware-
house and the profit is observed. Beyond this, a
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Fig. 5. Trend of the profits with varying warehouse length.
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Fig. 6. Trend of the profits with varying warehouse length.
larger warehouse does not add any benefit. On the
other hand, Fig. 6 shows how specific demand
profiles could require a larger warehouse to suit
alternative production schedules that are able to
further increase the profit generated.

A second set of computational tests (Fig. 7)
studied the profit trend with respect to system
saturation (i.e. the minimum utilisation of the
EAF). According to a given demand profile,
profit may decrease because of the need for a
production amount larger than demand. The EAF
saturation plays a significant role in steel
plants, as production activity must be maintained
to prevent the costs resulting from system
interruptions. The EAF utilisation cannot fall
below a threshold, thereby determining the poor
utilisation of some components (e.g. electrodes
and refractories). Therefore, make-to-stock
production may be an unavoidable choice in steel
plants, which is also discussed in Kalagnanam
et al. (2000).

The third set of computational tests investigated
the profit trend while varying the number of layers
in the billet stacks. A positive coefficient a was
adopted to give the number of stack layers for the
ith billet, i.e. da � maxðlayeriÞewith 0pap1. Fig. 8
shows the trend of the two situations related to the
introduction of the warehouse capacity constraint.
The profit data show a monotonic trend, i.e. lower
the a coefficient, the higher the profit. Obviously,
this fact can be explained by the lower holding
costs (due to the reduced cooling times) and the
prompt delivery to the customers.
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8. The algorithm

The model in Section 5 offered acceptable
results for a significant part of the problems
considered. However, the optimal solution cannot
be identified for the given situation, e.g. when the
order plan determines the EAF saturation and
prompt delivery is required (low number of layers).
To overcome this problem, different optimisation
algorithms were compared and the best perform-
ing one is here, as follows:

Initial scheduling search:

1.
 Compute the optimal production plan with

a ¼ 0:1
(a) If solution is feasible-optimal solution-

end
(b) Otherwise-go to step 2
2.
 Compute the optimal production plan with
a ¼ 1
(a) If solution is feasible-go to step 3
(b) Otherwise-the problem is unfeasible,

check input data.

rst schedule improvement:
Fi

3.
 Relax the warehouse capacity constraint and
compute the optimal production plan with
a ¼ 0:1, set h:¼0; Calculate Spaceij ¼ I ij � sj �

NBCi according to the production plan just
generated-go to step 3(a)
(a) Considering all the ith products, complete

set I0 with the elements for which
maxj SpaceijXLInv; then, set variable
layeri ¼ maxðlayeriÞ 8i 2 I 0-go to step 4.
(b) Considering all the jth days, complete set Ij
00

with the product elements for whichP
iSpace½i; j	XLInv; according to Spaceij

order the products i 2 I 00j increasingly, then,
set variable layeri at value max(layeri) for i

in hth position-go to step 4.

4.
 Compute the optimal production plan consider-

ing the warehouse capacity constraints and the
variable layeri

(a) If solution is feasible-go to step 5
(b) Otherwise-h:¼h þ 1 and go to step 3(b)

cond schedule improvement:
Se

5.
 Starting from production schedule (4(a)) and
the related Spaceij ¼ I ij � sj � NBCi � auxi values,
go to step 5(a)
(a) 8i 2 ½I 0; I 00j	 with 1

4
LInvpmaxj Spacep1

2
LInv

set the variable layeri ¼ d1
2
maxðlayeriÞe

Compute the optimal production plan with
warehouse capacity constraints and new
variable layeri

1. If solution is feasible-go to step 5(b)
2. Otherwise-keep point 4 solution-end

(b) 8i 2 ½I 0; I 00j	 with 1
8
LInvpmaxj Spacep1

4
LInv

set the variable layeri at value
layeri at value d1

4
maxðlayeriÞe Compute

the optimal production plan with ware-
house capacity constraints and new variable
layeri

1. If solution is feasible-go to step 5(c)
2. Otherwise-keep point 5(a) solution -

end
(c) 8i 2 ½I 0; I 00j	 with maxj Spaceijp1

8
LInv set

the variable layeri at value
layeri at value d1

8
maxðlayeriÞe Compute
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the optimal production plan with ware-
house capacity constraints and new variable
layeri

1. If solution is feasible-keep point 5(c)
solution-end.

2. Otherwise-keep point 5(b) solution-
end.
The algorithm proposed above was successfully
applied in several situations. As an example, a
production plan consisting of 700 casts was found
feasible only with a ¼ 1. The first part of the
algorithm led to a 3.57% improvement in the
objective function, while the second part resulted
in an additional 7.28% improvement. Also sig-
nificant computational time savings result from
the utilisation of the algorithm proposed. These
results pertain to specific demand profiles, but
experimental tests were carried out to validate the
algorithm definitively.
9. Conclusions

This study proposed a mathematical model for
production planning in the CC process of a mini
steel plant. The software developed allows to
optimise the production schedule automatically.
Starting from the industrial case, the model
considers the billet-cooling area (warehouse) as
an integral part of the productive system. This
practical aspect renders the present work original
and of considerable industrial significance. The
study is completed by a set of computational tests
to validate the model itself; taking into account the
possible variations of the relevant parameters of
the productive system. The results obtained show
how the constraint introduced by the warehouse
capacity impacts on the production schedule.
Therefore, an algorithmic procedure is proposed
in order to identify infeasible demand profiles and
generate a ‘‘good’’ production schedule, when the
optimal solution cannot be found. Further com-
putational experiments are performed to validate
the optimisation algorithm.
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