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Abstract

The present paper presents the algorithmic solution, based on an Ant System metaheuristic, of an industrial

production–inventory problem in a steel continuous-casting plant. The model proposed is based on an objective

function, the aim of which is to find the most profitable production schedule of the steel billets. Furthermore, the model

takes into account the relevant parameters of the finite-capacity productive system (e.g. set-up and processing times,

demand profile, warehouse capacity). Moreover, the make-to-order production environment of the company presents a

significant manufacturing phase, which is represented by the billet cooling warehouse (similarly to the drying process in

paper and textile production, or maturing in food production): this fact introduces a relevant constraint to production

schedule. The study shows the basic criteria used for the problem modelling and the steps proposed for profit

optimisation. The Ant System algorithm implemented is discussed and its relevance for the steel plant production

management is shown.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

As far as the scheduling problem is concerned,
several studies highlight the existing gap between
theory and practice (e.g. MacCarthy and Liu,
1993), due to the difficulties in the mathematical
description of complex industrial contexts.
e front matter r 2005 Elsevier B.V. All rights reserve

e.2005.01.008

ng author.

ss: zanoni@ing.unibs.it (S. Zanoni).
In the present contribution, a metaheuristic
approach, the Ant Colony Optimisation intro-
duced by Dorigo et al. (1991), is applied to the
production scheduling of a real industrial context,
where the constraint introduced by the finite
product warehouse is particularly relevant.
This problem has been discussed, for the first

time, by Zanoni and Zavanella (2005), and it has
been approached by a Mixed Integer Linear
Model (MIP), implemented and solved using
common linear optimisation solver (CPLEX
d.
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6.6.0). For the specific industrial case, the linear
model required 8960 integer variables (2240
binary) and 9176 constraints.

Frequently, a linear-programming approach
requires a significant effort in the constraint
definitions, so as to guarantee their ability in
describing the real systems. Therefore, the problem
features and conditions are frequently simplified,
thus obtaining a mathematical model far from the
reality examined. It is easy to understand why, in
the industrial context, it is often necessary to
abandon the linear programming approach in
favour of alternative solution methods.

Between the several methodologies available for
approaching and solving complex problems, heur-
istic algorithms play a significant role. They do not
guarantee optimality, but they are fast and, often,
successfully applied to hard computational pro-
blems (Reeves, 1995). In the present study, the
metaheuristic defined as Ant System is adopted: it
pertains to the class of the Ant Colony Optimiza-
tion (ACO) metaheuristics, based on a strategy of
solution search derived from the observation of
ant behaviour.

It should be highlighted that the present work
does not aim to evaluate the outperforming
heuristic, among the several available in literature,
but it verifies the applicability of an ACO
algorithm to an industrial environment, compar-
ing it to the possible MPL solution. The choice of
the ACO metaheuristic class has been driven by
the promising results of their application to real
industrial cases, as presented in literature (Gravel
et al., 2002; Gagné et al., 2002). The industrial case
discussed may be compared to small TSP problems
(10–80 nodes): in such a situation, some authors
(Dorigo et al., 1991; Dorigo and Gambarella,
1997; Stützle and Hoos, 1998) show how ACO
metaheuristics yield better solutions than other
heuristics, also when compared to widely studied
ones, as Genetic Algorithms (Gravel et al., 2002;
Ying and Liao, 2003).

In their review of solution techniques for
scheduling flexible shops, Blazewicz et al. (1996)
note that methods such as Simulated Annealing,
Tabu Search and Genetic Algorithms are fre-
quently used and they emerge as powerful
techniques for this task. Elsewhere, in the schedul-
ing literature, the use of ‘‘neural networks’’ may be
found (Huang and Zhang, 1994; Sabuncuoglu and
Gurgun, 1996) as well as ACO metaheuristics
(Colorni et al., 1994; Stützle, 1998; Den Besten et
al., 2000; Ying and Liao, 2003). A large number of
similar applications, drawn from various industrial
situations, may be found in literature. Franca et al.
(1996) use Tabu Search to minimise the makespan
of a schedule for parallel processors. Lee and
Pinedo (1997) minimise the weighted tardiness in a
situation, close to the one discussed here, using a
free-phase heuristic and incorporating a Simulated
Annealing algorithm. Rubin and Ragatz (1995)
use a Genetic Algorithm to schedules n jobs on one
machine, so that total tardiness is minimised where
set-ups are sequence dependent. Tang et al. (2002)
enhanced a linear mixed integer model (Tang et
al., 2000) using a Genetic Algorithm for the slab
stack-shuffling problem when implementing steel
rolling schedules.
The utilisation of mathematical methods for

production optimisation in steel plants (the
industrial problem we are focusing on) is not
new: Tibor (1958) introduced a linear mathema-
tical model to optimise the mix of raw materials
and energy consumption. Several contributions
followed, involving mathematical programming
of the same problem. A survey on this topic (Tang
et al., 2001) shows how proposed models refer to
the optimisation of the typical stages of steel
production, i.e. steel making (SM), continuous
casting (CC) and hot rolling (HR). The optimisa-
tion may be carried out for the whole system or a
part of it. The present contribution is focused on
the CC phase, the most relevant phase of
mini-steel plants (the final products are billets,
differing in section, length and steel composition).
Until now, research on production planning
and scheduling in steel plants used different
kinds of heuristic solution methods, such as
Artificial Intelligence, Tabu Search, Genetic Algo-

rithm, Simulated Annealing and Multi agent

methods.
It is necessary to emphasise that the production

scheduling problem of mini-steel plants presents
several aspects of originality and interest. This is
particularly true for the constraint introduced by
the warehouse finished products, which exerts
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an impact on the productive cycle, being also a
part of it, as a consequence of the cooling phase.
2. The Ant System

ACO metaheuristics (Colorni et al., 1994;
Stützle, 1998) have been recently developed for
combinatorial optimisation, inspired by the study
of the ant behaviour (Goss et al., 1989). Ants
communicate among themselves through phero-
mone, a substance that they deposit on the ground
in variable amounts, as they move. It has been
observed that the more ants use a particular path,
the more pheromone is deposited on that path and
the more it becomes attractive to other ants
seeking food. If an obstacle is suddenly placed
on an established path, leading to a food source,
ants will initially go right or left in a seemingly
random manner, but those choosing the shorter
path will reach the food more quickly, and they
will take the return journey earlier. Therefore, the
pheromone on the shorter path will be more
strongly reinforced and this path will eventually
become the preferred route for the stream of ants
(autocatalytic process). These properties lead to
the natural application of ACO metaheuristics to
the Travelling Salesman Problem (TSP) (e.g.
Colorni et al., 1991; Dorigo et al., 1991).

Given a set of n towns, the TSP problem may be
stated as the problem of finding the minimal length
of a closed tour visiting each town once. We define
dij as the length of the path between town i and
town j. An instance of the TSP problem is given by
a weighted graph (N,E), where N is the set of
towns and E is the set of edges between towns,
weighted by the distances. At time t, the kth ant at
node i chooses the next node j to visit using the
following probabilistic rule pk

ijðtÞ:

pk
ijðtÞ ¼

P
wetabuk

½tij ðtÞ�
a½Zij �

b

½tiwðtÞ�
a½Ziw�

b if jetabuk;

0 if j 2 tabuk;

8><
>: (1)

where tij (t) is the intensity of trail on edge (i, j) at
time t; Zij ¼ 1=dij is the ‘‘visibility’’; a is the relative
importance of the edge; b is the relative impor-
tance of the ‘‘visibility’’; tabuk is a vector,
containing the tabu list of the kth ant and keeping
memory of the towns already visited up to time t.
This vector avoids ants visiting towns twice, before
a tour has been completed.
Therefore, the transition probability represents

a compromise between visibility (the closer the
town, the higher the probability to choose it) and
trail intensity (the higher the traffic on the edge
(i, j), the higher its attractiveness, as in Colorni et
al. (1991) and Dorigo et al. (1991)).
So as to guarantee the formulation of a feasible

tour, nodes already visited are excluded from the
choice by the use of the tabu list mentioned. Each
ant k will refer to its own tabu list, i.e. tabuk;
containing the ordered list of the nodes already
visited. At any given time, several ants seek for a
feasible tour: a cycle ends when each ant has
completed the tour of the n nodes. In this paper,
the algorithm proposed updates the pheromone
trail intensity at the end of each cycle: this fact
allows us to update the trail according to the
evaluation of the solution found in the cycle. The
updating rule is implemented as follows:

tijðtþ nÞ ¼ rtijðtÞ þ Dtij , (2)

where tijðtþ nÞ is the pheromone trail at the end of
cycle; r is a coefficient, such that (1�r) represents
the trail evaporation; Dtij is the quantity of trail
substance deposited on edge (i, j); Dtij ¼

Pm
k¼1Dt

k
ij ;

Dtk
ij is the quantity of pheromone deposited on

edge (i, j) by the kth ant;

Dtk
ij ¼

Q=Lk if ði; jÞ 2 tour done by ant k;

0 otherwise;

(

Q is a constant that represents the total quantity of
trail left by an ant during one cycle; Lk is the
length of the tour followed by the kth ant.
Let Lk be the length of the tour followed at time

t by the kth ant. This tour length will in turn
influence Dtk

ij ; by the amount of the pheromone
that is added by the kth ant to the edge (i, j). This
quantity is proportional to the ‘‘quality’’ of the
tour, as measured by Q/Lk parameter. The
updating of the trail is also influenced by
the evaporation factor (1�r), which decreases
the quantity of the pheromone present on the trail
at the previous cycle. Fig. 1 describes the steps of
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the Ant System proposed by Colorni et al. (1991)
and used as reference in the present work.
3. The problem description

This study focuses on the optimisation of the
production schedule, i.e. the optimal production
sequence of the billets, in a ‘‘mini steel plant’’,
where the finished product warehouse is a part of
the production process. In this area, billets are
cooled before their delivery to the customer. Billets
differ in steel composition and size (section and
length).

The final result of the algorithm is the sequence
of customer orders to be produced, thus defining
the starting date of each job and considering the
delivery date required by the customer. If a delay
in the delivery is to be introduced, the objective
function accounts it as a penalty cost.

The productive system under consideration is
composed by two consecutive phases: the first one
is named continuous casting (CC), whose core is
an electric arc furnace (EAF), and the second
phase requires billet cooling, as carried out in the
warehouse. CC process carries out without inter-
ruptions, up to the complete emptying of the ladle.
Once a ladle is emptied, it must be quickly replaced
by a full one, with a minimum loss of time. This
peculiarity of the productive cycle imposes that
interruptions in billet production must be reduced
at the minimum possible, establishing a significant
constraint for production planning and scheduling
activity. The production process may be sum-
marised as follows: (1) preparation of the iron
scraps and alloy elements (EAF loading); (2)
fusion; (3) CC of the billets, (4) billet cooling.
Billet lengths range from 1.6 to 12m; sections are
square, with sides of 100, 115, 120, 130, 140 and
160mm. Different compositions of steel may be
produced (approximately, one hundred types).
Production is continuous on three shifts per day,
over the whole week, for a total of 330 working
days per year. The EAF capacity is equal to 65
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tons, with a 6200mm diameter. The maximum
production is estimated to be 1600–1700 tons per
day, i.e. a potential output of about 600,000 tons
per year. The warehouse for billet storing and
cooling is a 57� 26m2 area, where an overhead
crane is equipped with an electromagnet to
transport billets. The warehouse size, further
reduced by the billet handling device, represents
an important constraint (billets cannot be stocked
anywhere else). At present, if customer orders are
small (i.e., few casts), billets are arranged in a
single-layer stack, thus cooling rapidly
(o12 hours) to allow truck or railway transporta-
tion. If an order is large (i.e., several casts), billets
are generally stocked in multiple-layer stacks and
cooling times increase (roughly, 12 hours more for
each layer added). Of course, there exists a limit to
the maximum number of layers, depending on the
length and side of the billets (the absolute
maximum is 13 layers, for billets 115mm side
and 2m long).
4. Model formulation

In Section 2, the mechanism of the Ant System
has been shown as applied to the TSP. In
particular, it is possible to define a distance matrix,
the elements of which represent the length of the
arcs connecting the nodes of the problem graph.
This matrix allows the definition of the graph of
the specific TSP problem. In the billet scheduling
problem, the nodes of the graph do not represent
cities, but customer orders that the company
received and must delivery in the time horizon
fixed for the production plan. Generally, an order
may require several casts, one for each type of
billet produced (the maximum quantity of billets
produced with one cast is 65 tons). The arc length
represents the set-up time required to switch from
one production batch to another one: batches may
differ both in billet section and material composi-
tion. This parallelism between TSP and scheduling
problem is not new (e.g. Karg and Thompson,
1964). As far as the Ant System is concerned, few
applications to real industrial cases are known,
with the exception of the one offered by Gravel et
al. (2002), where this type of metaheuristic is
applied to the scheduling problem of an alumi-
nium smelter plant. The authors found that the
Ant metaheuristic gave much better quality results,
in much shorter computing times, than their
previous Genetic Algorithms. However, Gravel et
al.’s problem significantly differs from the case
investigated, because of the warehouse constraint.
Furthermore, the formulation of the present
problem introduces a profit function (PF) encom-
passing revenue maximisation (i.e., sold billets)
and cost minimisation (i.e., billet stocking and
delays in order deliveries). The PF is defined as
follows:

PF ¼
XT

t¼1

½pr � SðtÞ � I c � IðtÞ� �
Xn

i¼1

cd � DTSi �Oi,

(3)

where t ¼ 1,y,T is the day index; i ¼ 1,y, n is the
order index; pr is the average profit of one single
cast; S(t) is the number of casts sold in day t; Ic is
the average holding cost in the ware house per day
and per ton of cast steel; I(t) is the number of casts
stocked in the warehouse during the tth day; cd is
the daily penalty cost for orders not fulfilled on
time; DTSi is the delay, for the ith order, between
the shipment date and the date due by contract
(null if the shipment occurs on time or in advance);
Oi is the number of casts necessary to complete the
ith order.
The minimisation of the set-up times is not

explicitly included in the PF (as in Zanoni and
Zavanella, 2005): the lower the set-up times the
higher the time available for production, thus
obtaining a larger profit. On its turn, the choice of
the next node (customer order) the agent (ant)
moves to, is influenced by the set-up time. The
information concerning distances between graph
nodes, and the associated set-up times, is defined
as visibility ((tSETUP(i, j))�1), where i and j repre-
sent, respectively, the ith and the jth order): if this
is the unique strategy used for the node choice a
sub-optimal solution is obtained. In the ACO
metaheuristic, the visibility information is to be
integrated into the pheromone trace deposited by
agents (ants) on an arc of the graph. In particular,
the definitive trace is left when the sequence has
been defined (off-line updating) and the released
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quantity is related to the goodness of the solution
obtained. In the case under examination, the
pheromone trace is directly linked to the profit
generated by the sequence, evaluated as following:

tijðNCÞ ¼ rtijðNC� 1Þ þ
Xm

k¼1

Dtk
ij, (4)

where NC is the number of the cycle under
evaluation; tijðNCÞ is the quantity of pheromone
on the trail at the end of the cycle; tijðNC� 1Þ is
the current quantity of pheromone on the trail;
Dtk

ij is the quantity of trail substance deposited on
edge (i, j) by the kth ant;

Dtk
ij ¼

PFk if ði; jÞ 2 tour done by ant k;

0 otherwise;

(

PFk is the profit function value generated by the
kth ant and the sequence under evaluation.

Moreover, it should be highlighted that, in the
Ant System applied to the TSP, the tour generated
is closed (i.e. the ant returns to the starting city at
the end of its tour). On the contrary, in the present
problem, the sequence generated is an open one.
Table 1 shows a comparison between the Ant
System applied to the TSP instance and to the case
under examination.

As far as the billet arrangement in the ware-
house is concerned, the billets pertaining to a
specific order are not available for the delivery
until they are completely cooled. Billet cooling
depends on the order size and on the arrangement
of the billet layers, which is another decisions
variable. This articulated situation is modelled by
a sub-algorithm working both in the local search
and in the global optimisation. In local search,
agents pertaining to the graph choose the next
Table 1

Parallelism between TSP Ant System and the billet Ant System

Features TSP Ant System

Node City

Distance between node Length

Local search Select the nearest city

Global optimisation Updating of the best tour

Objective function Find the shortest path that links each no

Solution generated Closed sequence
node to reach: the aim of the sub-algorithm it is to
appreciate if the order selected could be stocked in
the warehouse or not. Thus, the objective of the
sub-algorithm is to find the best billet disposition,
according to the space available and the mini-
misation of the cooling time. As in Zanoni and
Zavanella (2005), a multiplier coefficient d, named
cooling coefficient and ranging between 0 and 1,
has been introduced in the sub-algorithm and used
as a variable. Thanks to d coefficient, it is possible
to evaluate the number of layers in each billet
stack according to the following relationship:

n�layerid ¼ d � n�max layeri

� �
,

where n1maxlayeri sets the maximum number of
layers for the stack of the billet type i.
As Fig. 2 shows, the development of each ant

path occurs according to the probability function
pk

ijðtÞ: Nodes (i.e., orders) evaluated by the prob-
ability function could be chosen from the nodes
which do not pertain to the tabuk set of the kth
ant, if space is available in the warehouse for billet
stocking. The latter condition implies the selection
of a specific billet stack arrangement, depending
on d parameter, to evaluate the available space as
follows:

IðtÞ ¼ Iðt� 1Þ þ I inðtÞ � IoutðtÞ, (5)

where I(t) is the number of billet casts stored in the
warehouse during the tth day; Iin(t) is the number
of billet casts produced and stocked in the ware-
house in the tth day; IoutðtÞ is the number of billet
casts picked up from the warehouse for delivery in
the tth day.
The Ant System algorithm allows the evaluation

of a convenient sequence of orders, taking into
account the whole set of billet orders and their
The billets Ant System

Order

Set-up time

Select the order with lowest set-up time

Updating of the best sequence

de Find the production sequence that maximises the profit

Open sequence
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possible sequences, considering different combina-
tions of parameter d 2 0; 1½ �:

The model presented has been implemented in a
software, named Ant Colony Optimization Simu-
lator (ACOS). It has been implemented to
appreciate the effectiveness of ACO metaheuristic
algorithms in the NP-hard optimisation problem:
ACOS may solve two different kinds of problem.
The first category, i.e. ‘‘generic problem’’, refers to
TSP instances of different dimensions: these
instances may be solved by the Ant metaheuristic
implemented, the Ant System (as in Colorni et al.,
1991), the Ant System Rank (as in Bullnheimer et
al., 1997), the Ant Colony System (as in Dorigo
and Gambarella, 1997) and the Max Min Ant
System (as in Stützle and Hoos, 1998). The second
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category, i.e. ‘‘specific problem’’, is the peculiar
application allowing the solution of the problem
examined by an ACO metaheuristic. The pro-
gramme presents a very flexible structure that
allows an easy formalisation of the problem and its
adjustment for the solution.
0
35% 40% 45% 50% 55% 60% 65% 70% 75%

Productive Saturation Level

A
v

Fig. 4. Comparison between the models (h figures are scaled

arbitrarily due to confidentiality reasons).
5. The model evaluation

Firstly, the performances of the solution ap-
proach and the metaheuristic have been evaluated
comparing it with the mixed integer linear model
proposed in Zanoni and Zavanella (2005), i.e. MIP
in the remainder. The comparison is quite plain,
because of the similarities in terms of variables in
the output of the two approaches. The results refer
to several experimental simulations, based on
different profiles of billets demand: these results
(Fig. 3) show how the behaviour of the two models
is extremely close, under conditions hereafter
discussed. Given a billet order plan, Fig. 3 shows
the trend of the profit while varying the constraint
of the warehouse length. It should be underlined
that the Ant System model didn’t find always the
optimal solution, but the relative error of its
solution ranges between 0.08% and 0.47%.

After this preliminary comparison, additional
simulation experiments were carried out: they
were grouped into different classes, divided on
the basis of the saturation of the plant productive
capacity. Fig. 4 shows the profit values: for each
saturation level of the plant, 10 different demand
profiles were randomly generated, according to the
23.1

23.2
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23.4

23.5

23.6

23.7

30 40 50 60 70 80 90
Warehouse length (m)

Pr
of

it 
(k

  /
m

on
th

)

Ant System

MIP

Fig. 3. Trend of the profits with varying warehouse length (h

figures are scaled arbitrarily due to confidentiality reasons).
historical data of the company. The saturation
level is defined as the ratio between the net
production time and the total time available for
production. Fig. 4 compares the performances of
the ACO metaheuristic, as proposed in the present
study, the MIP (Zanoni and Zavanella, 2005) and
the improved version of the MIP itself. This latter
MIP version enhances the former MIP-base
solution, so as to introduce some system con-
straints which could not be included in the Linear
Model of the MIP-base itself. The main improve-
ment introduced avoids the order splitting into
multiple deliveries (such a condition is unrealistic
for the industrial context and it cannot be
formulated by means of linear constraints).
Furthermore, an algorithmic control imposes the
uniqueness of the delivery of one billet order to the
customer. This control is included in the Ant
System model, too (Fig. 2), thus the comparison
between the MIP improved and the Ant System is
the most appropriate one. It is evident that the
MIP model offers a better solution, but the Ant
System model accurately fits the real industrial
situation, thanks to its detailed description of the
productive system. On the opposite, the con-
straints slightly differ in the MIP model, being
frequently ‘‘softer’’, because of the need for a
linear formulation of constraints themselves.
However, a frequent industrial situation refers

to a demand profile which requires the saturation
of the production system: such a condition is
particularly relevant in the industrial case con-
sidered. Therefore, other simulation experiments
have been carried out and this set of experiments
was arranged according to the criticality presented
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also in Zanoni and Zavanella (2005) and identified
as a weak point of the MIP. This particular
situation (high saturation) is also the most relevant
and interesting for the industrial case considered: it
amplifies the complexity and hardness of this
already tricky problem. The results of the simula-
tion experiments are still based on ten different
demand profiles, randomly generated according to
the historical data of the company. Fig. 5a shows
how the MIP model fails in these cases, being
unable to find the optimal solution with saturation
higher than 70%. However, it should be high-
lighted that the MIP model finds the solution quite
quickly (when it finds it). Results are shown in Fig.
5b, comparing the computational times between
the two different approaches adopted. These
results reflect the complexity and completeness of
the Ant System model, which is extremely close to
the real industrial context.
6. Conclusions

The present study discussed a model for the
solution of a particular problem observed in a real
industrial case. The adopted approach is based on
a metaheuristic algorithm, the Ant System. In
particular, the problem of production planning
and scheduling optimisation has been considered
for a mini steel plant. In this industrial case, the
final product warehouse plays a productive role,
being the cooling area of the billets. The study is
completed by a set of simulation experiments,
developed while using the proposed model (Ant
System based) and the reference model (based on a
mixed linear approach and discussed in Zanoni
and Zavanella, 2005). While developing the Ant
System model, a remarkable effort was produced
to describe in detail the real condition of the
industrial process examined. The results obtained
are shown in Section 5 and they show how the
approach proposed may provide good solutions in
acceptable computation times, thus fulfilling the
industrial needs.
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