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Abstract

In recent years, remanufacturing has emerged as an important research area, due to the tendency of stricter

environmental regulations in industry and the awakening to the economic attraction of recovering the products rather than

the disposal alternative. This also requires developing manufacturing planning and control techniques to improve the

performance of remanufacturing systems.

In order to reassemble finished products, new components are required since the recovery rate of return components can

never reach 100%. When making a disassembly and procurement decision, we then need to balance the inventory holding

cost and stockout cost. In the meantime, the process lead time depends on which disassembly and procurement option that

is chosen. In this paper, we study a system where remanufacturing is driven by customer orders. A disassembly order is

always released first and then the disassembly result determines whether a purchasing order is needed. Our objective is to

examine the process lead time, which can be used to determine the planned lead time in production planning and control of

remanufacturing. We start with disassembling a single-component case and then extend the model to a two-component

scenario. We also investigate how the disassembly yield influences the system performance. Results of this study are

intended to be implemented in a real-world engine remanufacturing environment.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The reuse field has grown considerably in the past
decades, due to its economical benefits and environ-
mental requirements. Remanufacturing, representing
a higher form of reuse and focusing on value-added
e front matter r 2007 Elsevier B.V. All rights reserved
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recovery, has been introduced in many fields, such as
in the automotive, telecommunication, electrical
equipment and machinery areas. In addition to the
economic profitability, there is an increasing number
of legislation restrictions that assign to the producers
the responsibility for taking care of used products,
for instance, EU Directive 2002/96/EC and 2003/
108/EC related to the Waste Electrical and Electronic

Equipment and EU Directive 2002/525/EC related to
the End of Life Vehicles. Remanufacturing has
become an important industrial sector to achieve
the goal of sustainable development.
.
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A large volume of literature in the reuse filed has
emerged in recent years. Gungor and Gupta (1999)
take a comprehensive survey and classify the
published work into different categories. Regarding
product and material recovery, there are several
issues being addressed in literature, namely collec-
tion, disassembly, inventory control and production
planning. Collection deals with the reverse logistics
system which aims at collecting the used products
and package efficiently. Disassembly often ad-
dresses the disassembly strategy (how far to
disassemble?) and disassembly process planning (in
which way to disassemble?) questions. Among
others, Penev and de Ron (1996), Johnson and
Wang (1995, 1998) present models to decide the
disassembly sequence and routing, with the aim of
minimising the operational costs while fulfilling the
production due date. A recent survey study in
disassembly is also given by Lambert (2003).

A wide range of models have been developed with
the aim of improving inventory control in product
recovery process, for instance, the PUSH and
PULL policies investigated by van der Laan
(1999) and Teunter et al. (2002). Several other
policies are also available differing in terms of the
definition of inventory position (Kiesmüller 2003).
Other similar approaches, related to base stock
policies, can be found in Vlachos and Dekker (2000)
in which the aim is to determine single period order
quantities for an individual product, and in
Kiesmüller and Minner (2003), which extends the
determination of optimal order quantities to the
multi-period case with significant recovery and
production lead times. Nevertheless, the above
models are mainly ‘‘base stock’’ type of inventory
control systems.

Production planning systems are often used in
enterprises with more complicated products such as
engines. In this case a product recovery process can
be roughly divided into three stages: Disassembly,
remanufacturing and reassembly. Disassembly is the
first step in product recovery and acts as an
information gateway for production planning
(Guide, 2000). Return products are disassembled,
assessed and then purchasing requirements are
generated in order that sufficient new parts are
procured. Production planning and control activ-
ities become more complicated because of multi-
dimensional material flows, uncertainties of the
conditions of the returned products, and imbalances
in return and demand rates, etc. (Guide, 2000).
Managing such a production process is a very
challenging job in practice, due to the lack of
specific technology and planning and control
systems for remanufacturing.

In recent literature concerning production plan-
ning and control of remanufacturing systems,
models are often developed for fast moving and
standard items. Regarding the make-to-order
(MTO) remanufacturing environment, limited ef-
forts appear to have been devoted. According to
Guide (2000), coordinating disassembly, remanu-
facturing and reassembly processes is essential to
satisfy material match requirements. This some-
times leads to an MTO production strategy, with a
cost usually 25% higher than in a make-to-stock
(MTS) situation. Guide et al. (2003) further
investigate different remanufacturing strategies
and the associated product and process character-
istics. They conclude that return volume is still the
major influential factor. The US Navy aviation
depots are used as a typical MTO example in
remanufacturing.

Another relevant work is the study by Souza and
Ketzenberg (2002). They investigate an MTO
remanufacturing system using a queueing network
approach. Their focus is to determine the manu-
facturing–remanufacturing mixture in order to
maximise the profit from strategic perspective. They
assume that remanufacturing consumes less capa-
city than manufacturing, thus remanufacturing will
still be attractive even if it has a less profit margin
than manufacturing.

In addition to the above background, our current
study is also motivated by the first author’s
experiences with an engine remanufacturing com-
pany in the automotive industry. Due to high
production costs, low production volume and high
specification of the order, it is very difficult to
forecast customer demand in terms of quantity and
timing, and it would be rather hard to adapt a ‘‘base
stock’’ model. Thus an MTO strategy has recently
been adapted by the company so that a disassembly
order is always released after a customer demand
occurs. The aim of this paper is to build a simple
model to estimate basic production planning and
control parameters, such as the planned lead time in
such an MTO remanufacturing environment. Re-
sults of this study are intended to be implemented in
this engine remanufacturing company.

As will be seen later, our single component model
turns out to have a structure similar to the well
known ‘newsboy model’. Even though there is an
extensive literature in this area, we have not been
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aware of any research concerning disassembly–
remanufacturing systems using the newsboy model.
For a comprehensive literature review concerning
the newsboy problem, we refer to the study by
Khouja (1999).

This paper is structured as follows. In Section 2
we provide a detailed description of the problem
and related ordering policies in an MTO remanu-
facturing system with one single critical component
to be recovered. In Section 3, we present our model
formulation, including the optimisation condition
for determining the control variables. The model is
then extended to a two-component case in order to
investigate how the production parameters influence
decisions in Section 4. To support our analytical
findings, numerical examples have been developed
in Section 5. Finally, we draw some conclusions and
provide suggestions for future studies.

2. Description of the problem

When we remanufacture high value items such as
engines, the remanufacturing process is rather
customer-order oriented. When an engine core is
disassembled, it is essential to ensure that it is the
right model to be supplied in the reassembly
process. In addition, labour is often the major cost
in acquiring the disassembled component. Therefore
using a push strategy, i.e. disassembling compo-
nents such as crankshaft and pushing them into the
component stock, waiting for demand to occur, is
usually very expensive. In this circumstance, an
MTO strategy is often implemented instead. How-
ever, due to the uncertainty of the disassembly
process, both in terms of its timing and component
quality, it is very hard to determine the availability
of a specific component. In case of shortage of the
component from disassembly, a new component
Fig. 1. Information and material flow in
must be purchased to replace it. The question then
becomes: At which point in time should we start the
disassembly?

In particular, we refer to a disassembly–remanu-
facturing system with an MTO policy with material
(of returned products and components) and infor-
mation flow as illustrated in Fig. 1. The ordering
procedure occurs according to the following con-
secutive steps:
i.
a dis
At time point 0, a customer order is received
and it should be (re)assembled at time T.
ii.
 A disassembly order is released at t, with
0otoT, where t is the decision variable, or
alternatively, we consider the planned lead time
(T�t) as the decision variable.
iii.
 At t+t1, the disassembly process is complete.
The disassembly lead time t1 is stochastic. Its
density function and distribution function are
f(t) and F(t), respectively, with tX0. f(t) is
assumed to be piecewise continuous.
iv.
 At t+t1, the status of the disassembled compo-
nent is realised. It is either used for reassembly
with probability p or disposed of due to its
poor quality. p is the yield of return products.
v.
 If the quality of a component matches the
standard, this component is held in inventory
till time T for reassembly.
vi.
 If the disassembled component is disposed of, a
purchasing order is released to procure a new
component. This lead time t2 is also stochastic.
Its density and distribution functions are g(t)
and G(t), respectively, with tX0. g(t) is also
assumed to be piecewise continuous.
vii.
 If t+t1+t2oT, the component is held in the
inventory till time T for reassembly.
viii.
 There is an inventory holding cost h (h/time unit)
for the component during the interval [t, T].
assembly–reassembly system.
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Fig. 2. Time scale of the ordering procedure.
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ix.
 If the component is acquired after T, a penalty
cost b (h/time unit) is incurred.
Fig. 2 illustrates the time scale of the above
ordering procedure. The objective is then to
minimise the sum of the total inventory holding
cost between 0 and T, in addition to the penalty cost
after T. Since the purchasing cost is proportional to
(1�p), it is a fixed cost in the long run. In this study,
we therefore exclude the purchasing cost from our
objective function.

3. Model formulation

The model can be formulated similarly to a
newsboy problem. Even though the product to be
disassembled is one unit, due to the yield probability
and stochastic lead times of disassembly and
purchasing, we either incur an overage cost if
components are available before T, or an underage
cost if components are not ready at time T.

3.1. Objective function

We first develop the objective function of the
system described in the previous section. When one
component is considered in the disassembly process,
inventory only occurs during the interval [t, T]. At
time t within this interval, we obtain inventory
either if the disassembly process has finished and the
quality is good, or when the disassembly process is
finished, and the quality of the component is bad
and a purchased component has been received.

The expected inventory is therefore

p

Z T

t¼t
F ðt� tÞdtþ ð1� pÞ

�

Z T

t¼t

Z t�t

x¼0

Gðt� t� xÞf ðxÞdxdt: ð1Þ

Similarly, the expected stockout is

p

Z 1
t¼T

ð1� F ðt� tÞÞdtþ ð1� pÞ

�

Z 1
t¼T

1�

Z t�t

x¼0

Gðt� t� xÞf ðxÞdx

� �
dt ð2Þ
which together with the inventory function in
Eq. (1), provides the expected total cost for the
particular order as

C ¼ h p

Z T

t¼t
F ðt� tÞdtþ ð1� pÞ

�

�

Z T

t¼t

Z t�t

x¼0

Gðt� t� xÞf ðxÞdxdt

�

þ b p

Z 1
t¼T

ð1� F ðt� tÞÞdtþ ð1� pÞ

�

�

Z 1
t¼T

1�

Z t�t

x¼0

Gðt� t� xÞf ðxÞdx

� �
dt

�
.

ð3Þ

We here exclude the purchasing cost, since on the
long-run average this cost is fixed as we have
mentioned in previous section.

3.2. Optimisation conditions

To simplify the analysis and develop the optimi-
sation conditions, we introduce the following
function.

Definition 1.

FðtÞ ¼ pF ðtÞ þ ð1� pÞ

Z t

x¼0

Gðt� xÞf ðxÞdx

¼ pF ðtÞ þ ð1� pÞ

Z t

y¼0

Z y

x¼0

gðy� xÞf ðxÞdxdy.

Lemma 1. The function F(t) is a probability dis-

tribution function.

Proof. According to Definition 1, it is easy to see
that F(0) ¼ 0 and F(N) ¼ 1. In addition, the first-
order derivative is dF(t)/dt ¼ pf(t)+(1�p)

R t

x¼0
g

ðt� xÞf ðxÞdxX0 making F(t) non-decreasing. &

Lemma 2. FðtÞ ¼ dFðtÞ=dt ¼ pf ðtÞ þ ð1� pÞ
R t

x¼0
g

ðt� xÞf ðxÞdx is a probability density function.

Inserting Definition 1, we can rewrite the
objective function as

C ¼ h

Z T

t¼t
Fðt� tÞdtþ b

Z 1
t¼T

ð1� Fðt� tÞÞdt. (4)



ARTICLE IN PRESS
O. Tang et al. / Int. J. Production Economics 108 (2007) 426–435430
The first-order derivative of the objective function
with respect to t is

dC

dt
¼ � h

Z T

t¼t
fðt� tÞdtþ b

Z 1
t¼T

fðt� tÞdt

¼ � ðhþ bÞFðT � tÞ þ b. ð5Þ

Theorem 1. The objective function (4) is convex with

respect to t.

Proof. The second-order derivative of C is q2C/
qt2 ¼ (h+b)f(T�t)X0. &

Theorem 2. There exists an optimal solution t* that

minimises the objective function. If �(h+b)F(T)+b40,
then t* ¼ 0; otherwise the necessary and sufficient

optimisation condition is that the optimal t ¼ t*
satisfies

FðT � t�Þ ¼
b

bþ h
.

Proof. If �(h+b)F(T�t)+b40 starts by being
positive at t ¼ 0, then this is the minimising value,
otherwise, since b/(h+b)o1, there must exist an
intersection between the graph of F(T�t) and
b/(h+b). This intersection may be an interval of t.
To the left of the intersection, C is decreasing and to
the right C is increasing. &

From the above theorems and development, we
notice that our model has a similar structure to the
newsboy problem. The optimal planned lead time
(T�t) depends on the b/(b+h) ratio and the
distribution function F(t). In addition, we may
have multiple solutions satisfying the above optimi-
sation condition. In such a case, a short planned
lead time is preferable from practical viewpoint.

3.3. Moments of the process lead time

In this section, we discuss the moments of the
process lead time, which is defined as the time
difference between releasing disassembly order and
receiving the component, either from a disassembly
or purchasing order. We should be aware that this
lead time is a random variable and its value depends
on the disassembly and purchasing lead times and
the yield p. In principle (but with some exceptions,
see Feller, 1966, pp. 222–224), if all the moments of
this random lead time can be developed, the
distribution function F(t) will be determined.
Consequently, the optimal planned lead time can
be calculated according to Theorem 2.

Theorem 3. The first- and second-order moments of

f(t) can be written as

m1f ¼ mf þ ð1� pÞmg,

m2f ¼ m2f þ ð1� pÞðm2g þ 2mf mgÞ.

Proof. The moments of f(t) can be developed using
the Laplace transform. Details (including high-
order moments) are given in the Appendix A. &

Theorem 4. The first- and second-order central

moments of f(t) can be written as

mf ¼ mf þ ð1� pÞmg,

s2f ¼ s2f þ ð1� pÞs2g þ pð1� pÞðmgÞ
2.

The proof is again given in Appendix A.
3.4. Normal approximation

Due to the available moments and central moments
from Theorems 3 and 4, it is possible to calculate
the optimal planned lead time T�t* using approxi-
mations. In case an accurate planned lead time
is needed, we could implement high-order moments
and use a Pearson distribution (Grubbström
and Tang, 2006). A different simple approach is
using the normal distribution, which is often
accepted in industrial practice as an approximation.
A normal approximation is obtained using the first
moment and second central moment N(mf, s2f).
Writing O(T�tjmf, s2f) for the distribution function,
the solution will be approximated by

T � t ¼ O�1
b

hþ b
mf;s

2
f

���� �
(6)

which can be taken from standard normal tables.
Alternatively, the optimal order release time can be
written as a function of a safety factor k and the
standard deviation of the lead time

T � t ¼ mf þ ksf, (7)

where the k value is acquired from a normal
distribution table according to the ratio b/(b+h).
As an example of a normal approximation, if h ¼ 1,
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b ¼ 9, mf ¼ 1, mg ¼ 1, p ¼ 0.8, s2f ¼ 1, s2g ¼ 1, then
mf ¼ 1.2, s2f ¼ 1:36, and optimal T�t ¼ 2.693.

According to Theorem 4, the derivative of the
mean value q(mf)/qp ¼ �mgo0 whereas the deriva-
tive of the variance can be written as qðs2fÞ=qp ¼

�s2g þ ðmgÞ
2
� 2pðmgÞ

2 with the sign undetermined.
With a large purchasing lead time mg and a small s2g,
we could have po1/2�s2g/2(mg)

2 and the above
derivative is positive. At this level of p, increasing
the disassembly yield would increase the variance of
the lead times. Based on Eq. (7), we notice that with
a high ratio b/(b+h), we will obtain a large value of
k and the second part ksf will dominate. Thus an
increasing p in this situation may lead to a longer
planned lead time (T�t), which is not intuitively
straightforward.

4. Extension to two-component case

The idea here is to investigate situations when
there are several important dissembled components
to be used for further reassembly. For instance,
what is the effect if one component has a high
probability of failure? Shall we use the same order
policy as in the previous section or make the
purchase decision in advance and stock it as a
normal inventory? The ordering procedure is similar
to that suggested in the previous section, but we
now assume that after the disassembly, two types of
components are obtained (for instance crankshaft
and engine box). The probabilities of having
qualified components are p1 and p2, respectively.
The density and distribution functions of the two
corresponding lead times are now written g1(t),
G1(t), g2(t), G2(t), respectively, the densities assumed
piecewise continuous. A separate purchasing order
will be released if a component is not qualified.
Fig. 3 illustrates the time scale of the above ordering
procedure, referred to the two-component case.

The inventory for component 1 may exist in the
following cases: (i) before time point T, when
disassembly has finished and the quality of compo-
0
time

�+t1+t2 T
�+t1+t3�+t1�

disassembly

purchasing 1

purchasing 2

Fig. 3. Time scale of the ordering procedure in the two-

component case: t2 ¼ purchasing lead time of component 1,

t3 ¼ purchasing lead time of component 2.
nent 1 is good, or the purchasing component has
been received and (ii) after the time point T, when
the component 1 has been received but component 2
is delayed. Its expected inventory is therefore

I1 ¼ p1

Z T

t¼t
F ðt� tÞdtþ ð1� p1Þ

�

Z T

t¼t

Z t�t

x¼0

G1ðt� t� xÞf ðxÞdxdt

þ p1ð1� p2Þ

Z 1
t¼T

Z t�t

x¼0

ð1� G2ðt� t� xÞÞ

�f ðxÞdxdtþ ð1� p1Þð1� p2Þ

�

Z 1
t¼T

Z t�t

x¼0

G1ðt� t� xÞ

�ð1� G2ðt� t� xÞÞf ðxÞdxdt. ð8Þ

The expected inventory for component 2 has a
similar structure with its index being switched.
Meanwhile the expected stockout occurs only after
time point T, if either the disassembly process is not
finished or any of the components have not been
received. Its expected value is written as

B ¼

Z 1
t¼T

ð1� F ðt� tÞÞdtþ p1ð1� p2Þ

�

Z 1
t¼T

Z t�t

x¼0

ð1� G2ðt� t� xÞÞf ðxÞdx

� �
dt

þ ð1� p1Þp2

Z 1
t¼T

Z t�t

x¼0

ð1� G1ðt� t� xÞÞ

�

�f ðxÞdx

�
dtþ ð1� p1Þð1� p2Þ

�

Z 1
t¼T

1�

Z t�t

x¼0

G1ðt� t� xÞ

�

�G2ðt� t� xÞf ðxÞdx

�
dt. ð9Þ

The total cost is the sum of inventory and stockout
costs

C ¼ h1I1 þ h2I2 þ bB. (10)

Lemma 3. If G1(t) and G2(t) are distribution func-

tions, then G1(t)G2(t) is a distribution function.

Proof. Since G1(t) and G2(t) are both non-negative,
non-decreasing functions, starting at zero and
ending at unity, their product will behave the same
way. Thus G1(t)G2(t) is a distribution function. &
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Definition 2.

YðtÞ ¼ p1p2F ðtÞ þ ð1� p1Þp2

Z t

x¼0

G1ðt� xÞf ðxÞdx

þ p1ð1� p2Þ

Z t

x¼0

G2ðt� xÞf ðxÞdxþ ð1� p1Þ

�ð1� p2Þ

Z t

x¼0

G1ðt� xÞG2ðt� xÞf ðxÞdx.

Lemma 4. Y(t) is a distribution function.

Proof. Y(t) is a convex combination of four
distribution functions, making it a distribution
function. &

We then derive the first-order derivative of the
objective function as

dC

dt
¼ b� ðh1 þ h2 þ bÞYðT � tÞ. (11)

Theorem 5. The objective function (10) is convex and

there exists an optimal solution t*. If b�(h1+h2+b)
Y(T)40, then t* ¼ 0; otherwise the necessary and

sufficient optimisation condition is that the optimal t*
must satisfy

YðT � t�Þ ¼
b

bþ h1 þ h2
.

The proof follows the same approach as of
Theorem 2.

Unfortunately, the Laplace transform of the last
term (the ‘‘product term’’) in the function Y(t) is
more complicated than in the corresponding one-
component case. Therefore, the moments of the
process lead time are not easily obtained other than
for simple distributions. For instance, for two
uniform or two Gamma distributions, the moments
of the product term may be derived in closed form
(cf. Grubbström, 2005). However, the derivations
and subsequent expressions become complicated.
General expressions need still be developed (see also
the Appendix A).

Despite the difficulties in finding general expres-
sions for the moments of Y(t), an optimal value of t
can always be obtained numerically when p1, p2,
F(t), G1(t) and G2(t) are given. Examples will be
presented in Section 5.
5. Numerical examples

Numerical examples are used to illustrate our
model and to investigate the behaviour of the
disassembly–remanufacturing system proposed.
First, we give some examples for the system with a
single disassembled component and then we further
address cases with two disassembled components.

We set the parameters for the base case as b ¼ 10,
h ¼ 1, T ¼ 10 and p ¼ 0.8. The disassembly and
ordering lead times are assumed to be normally
distributed, with the following values: mf ¼ 4,
sf ¼ 1, mg ¼ 2, and sg ¼ 0.5, respectively. Accord-
ing to Theorem 2 we have the optimal value
t* ¼ 3.86 for the single-component case.

An interesting investigation is the relative im-
portance of p to the system performance and the
decision variable. From a long run viewpoint, an
increasing p reduces the cost for purchasing new
components. However, it turns out that an increas-
ing p does not necessarily decrease the inventory
holding and stockout costs at the operational level
(Fig. 4).

In many cases, an increasing p reduces the
optimal planned lead time (T�t). However, as we
have illustrated in Fig. 5, with a high ratio b/(b+h),
starting from a low p level, an increasing p slightly
prolongs the planned lead time, see Fig. 5. This
phenomenon consists with our discussion at the end
of Section 3.4.

In the two-component cases, we have the follow-
ing parameters for the base case: b ¼ 10, h1 ¼ 1,
h2 ¼ 2, mf ¼ 4, sf ¼ 1, and mg1 ¼ 2, sg1 ¼ 0.5,
mg2 ¼ 4, sg2 ¼ 0.5, T ¼ 10, p1 ¼ 0.8 and p2 ¼ 0.4.
Using Theorem 5 and substituting the optimal t into
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the objective function, we obtain t* ¼ 1.659 with a
minimal cost C* ¼ 10.097.

This two-component model can be used to
determine the purchasing strategy. For instance,
component 2 can be either purchased after or before
disassembly. If it is purchased after disassembly, the
optimal cost is C* ¼ 10.097 as shown above.
Instead, if component 2 is managed using a base
stock policy and it is assumed always to be available
in the purchased item inventory, we can apply our
single-component model for component 1 and
finally obtain the minimal cost to be C0* ¼ 2.939.
We may then determine the purchasing strategy by
comparing the cost saving DC ¼ C*–C0* ¼ 7.158
with the long-run average inventory holding cost of
component 2. The latter cost is possible to estimate
when this component has a fast moving pattern, i.e.
it is used for several similar engine models.

Further illustrative examples for two-component
cases are given in Figs. 6 and 7. The optimal total
cost when varying p2 has a similar pattern as in the
single component case. However, the response of t*
with respect of changing p2 shows only an increasing
function (Fig. 7). Further examples should be
examined to investigate whether a similar property
from Fig. 5 also exists in two-component cases or
not.

6. Conclusions

In this paper, we have developed models for
analysing a disassembly–remanufacturing system
where production is driven by customer orders.
We have investigated situations with both single and
two critical components from disassembly. Both
models turn out to be newsboy problems and the
decision variable can be solved easily. In the single
component model, we also present the moments and
central moments, which can be further used as an
approximation to obtain the planned lead time. This
analysis also brings us some insights into the
problem, for instance, an increasing p does not
necessarily shorten the planned lead time. In
addition, an increasing p does not necessarily reduce
the system operational cost.

Our model can easily be implemented in practice,
for instance, for setting the planned lead time in a
production planning and control system and for
determining the component purchasing strategy.
The above issues are very important from the
practical perspectives of disassembly and remanu-
facturing. The interesting findings in Figs. 4 and 5
are also important in practice. In an engine
remanufacturing systems, the disassembly yield p

is often associated with the labour skill. In the case
company we have, the most skilled labour is
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assigned to the disassembly job in order to increase
the yield. From the result of our model, we have to
re-examine this policy. An appropriate range of p

should be developed in order to allocate properly
the production resources.

There are still many unsolved problems in similar
systems. For instance, how does the component
commonality influence the disassembly and rema-
nufacturing decision? It is also very often the case
that a system is a mixture of MTO and MTS. Then
the question becomes: Where is the customer
penetration point? If quantitative models are devel-
oped, we will gain a better understanding of the
system and eventually improve the production
planning and control of the disassembly–remanu-
facturing system.
Appendix A

A1. Proof of Theorem 3

Let ~fðsÞ be Laplace transform of the correspond-
ing probability density function, i.e.

~fðsÞ ¼ s ~FðsÞ ¼ ~f ðsÞðpþ ð1� pÞ ~gðsÞÞ.

Taking the nth derivative yields

~f
ðnÞ
ðsÞ ¼

d ~fðsÞ
dsn
¼ p ~f

ðnÞ
ðsÞ þ ð1� pÞ ~f ðsÞ ~gðsÞ
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Developing this expression, we have

~f
ð0Þ
ðsÞ ¼ p ~f ðsÞ þ ð1� pÞ ~f ðsÞ ~gðsÞ,

~f
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. . .

Since the limit ð�1Þn lim
s!0

~f
ðnÞ
ðsÞ yields the moments

of the function f(t), we have the moments of f(t)
written as

m0f ¼ 1,

m1f ¼ mf þ ð1� pÞmg,

m2f ¼ m2f þ ð1� pÞðm2g þ 2mf mgÞ,

m3f ¼ m3f þ ð1� pÞðm2g þ 3mf m
2
g þ 3m2f mgÞ.

. . . &
A2. Proof of Theorem 4

Using the definition and expression m̂m
X ¼

E ðX � mÞm½ � ¼
Pm

j¼0

m

j

 !
ð�mÞm�jmj

X for the rela-

tion between moments and central moments gives
us

mf ¼ mf þ ð1� pÞmg,

m̂2f ¼ s2f ¼ m2f � ðmfÞ
2

¼ m2f þ ð1� pÞðm2g þ 2mf mgÞ � mf þ ð1� pÞmg

� �2
¼ s2f þ ð1� pÞðs2g þ ðmgÞ

2
Þ � ð1� pÞ2ðmgÞ

2

¼ s2f þ ð1� pÞs2g þ pð1� pÞðmgÞ
2

and so on for higher order central moments. &

A3. Derivation of moments in two-component case

~f
ðnÞ
ðsÞ ¼

d ~fðsÞ
dsn
¼ p ~f
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The Laplace transform of the density of Y(t)
(Definition 2) is given by

~yðsÞ ¼ d
dYðtÞ
dt

	 

¼ p1p2

~f ðsÞ þ ð1� p1Þp2 ~g1ðsÞ
~f ðsÞ

þ p1ð1� p2Þ ~g2ðsÞ
~f ðsÞ

þ ð1� p1Þð1� p2Þ
~hðsÞ ~f ðsÞ,

where h(t) ¼ dH(t)/dt ¼ d(G1(t)G2(t))/dt, ~hðsÞ ¼
d dhðtÞ=dt
� �

. The first three terms may be treated
in the same way as in the proof of Theorem 3 above.
The fourth term creates a need for additional
developments (see Grubbström, 2005).



ARTICLE IN PRESS
O. Tang et al. / Int. J. Production Economics 108 (2007) 426–435 435
References

Feller, W., 1966. An Introduction to Probability Theory and Its

Applications, vol. 2. Wiley, New York.

Grubbström, R.W., 2005. The moments of the product of two

distributions. Working Paper WP-337, Department of Pro-
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