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Measuring and benchmarking productive systems
performances using DEA: an industrial case
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Abstract. The study presents a comprehensive analysis of the
efficiency over time of five steel plants pertaining to one of the

largest private groups in Italy. In particular, the paper proposes
a new technique for plant performance measurement that is
able to help the management in formulating manufacturing
strategies according to the performance measurements usually
available in industrial environments. The analysis is carried out
by the methodology of Data Envelopment Analysis (DEA),
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taking advantage of several improved solutions proposed in the
literature adopted to augment the discriminating resolution.
Results obtained are summed up by means of suitable cluster
analysis. Finally, thanks to the dual formulation of DEA, a
technical and economic analysis is proposed with reference to
the productive units identified as inefficient. The technique
proposed was successfully applied to the industrial case of refer-
ence and it can be easily extended to every manufacturing
context.

1. Introduction

Comparing the performance of competitive manufac-
turing systems is a complex task which requires the
resolution of a multifaceted problem. The main reasons
for the complexity of plant benchmarking are (i) the
coexistence of several conflicting performance criteria
and (ii) the wide variety of available evaluation criteria.
In this paper, thanks to the utilization of several suit-
able performance parameters, the Data Envelopment
Analysis (DEA) technique is used to rank the
relative efficiency of five productive units of a large
private company with reference to the years from
1995 to 1997.

By adopting the DEA approach for plant performance
measurement, it is possible (i) to consider several manu-
facturing performance dimensions in an integrated and
comparative manner, (ii) recognizing the causes of gaps
in inefficient plants so as to suggest new manufacturing
strategies for restoring competitive levels and (iii) quan-
tifying the need for improvement in order to reach effi-
ciency. In other words, the method here proposed can
represent a powerful and interesting tool of analysis for
feasibility studies concerning the definition of future man-
ufacturing investment strategies. It is particularly helpful
in defining the opportune areas for intervention (i.e. a
reduction in scraps rather than an improvement in man-
power productivity). It is evident that being able to iden-
tify the ‘true’ aspects of inefficiency in a complex network
of productive units helps the management in defining the
most opportune and appropriate strategy for the produc-
tion, planning and control (PP&C) systems and/or meth-
odologies. Once adopted, these strategies will permit the
productive units to maintain a satisfactory competitive
level.

Initially, the DEA is applied in its traditional form. In
sections 6–8, three different approaches are used to
improve DEA discriminating power (reduction of factors,
cross-efficiency and stepwise approach). Finally, results
are ranked by cluster analysis, thus focusing on analogies
or discrepancies of the performance values evaluated by
the different DEA methods. The cluster analysis also
allows the evaluation of each single plant performance
over the successive time periods (1995–1997). As usual

in linear programming (LP) problems, the dual form of
the DEA technique enables the analysis of improvement
possibilities for each plant, highlighting the critical para-
meters to be modified in order to increase the relative
performance of the plant in question.

2. Data Envelopment Analysis (DEA)

DEA is an LP-based technique proposed by Charnes
et al. (1978) which evaluates the relative efficiency of
several Decision-making Units (DMUs) by considering
multiple inputs (i.e. resources used) and outputs (i.e.
products and/or performances obtained). The efficiency
is defined as the ratio of the weighted sum of the m out-
puts to the weighted sum of the n inputs, i.e.:

Efficiency of DMU j ¼ Ej ¼
weighted sum of outputs

weighted sum of inputs

¼
�1 y1j þ � � � þ �m ymj

�1x1j þ � � � þ �nxnj

where:

�k is the weight of output k
�k is the weight of input k
ykj is the amount of output k from DMU j

xkj is the amount of input k from DMU j

The efficiency is a value usually constrained to the inter-
val [0, 1]. The evaluation of the efficiency of each DMU
(e.g. a productive unit) requires the definition of a single
and common set of weights for each plant, thus introdu-
cing the problem of how this set can be obtained. The case
proposed considers a DMU as an alternative manufac-
turing system and several possible performance criteria
can be considered as input or output: each plant was
intended to satisfy only one or a few managerial require-
ments. For example, one plant may reflect the strategic
need for a flexible production and this target is reached to
the detriment of a high number of set-ups and machine
idle times. Consequently, the performances of the differ-
ent criteria adopted may legitimately differ from plant to
plant and, as such, may be assigned different relevance
(weights).

Once the impossibility of finding a common set of
weights has been recognized, a possible approach is to
adopt the set of weights most favourable to each plant,
with respect to competing plants.

Considering a set of n competing manufacturing sys-
tems, the relative efficiency Ej of plant j ð j ¼ 1, . . . , sÞ can
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be evaluated by the resolution of the following model:

max Ej ð1Þ

subject to

Pm
k¼1 �k ykjPn
i¼1 �ixij

� 1 for each DMU j ¼ 1, . . . , s ðiÞ

�k � 0 k¼ 1, . . . ,m ðiiÞ

�i � 0 i¼ 1, . . . , n ðiiiÞ

Constraints (ii) and (iii) impose a positive value on the
weights of inputs and outputs (i.e. the variables of the
model). Constraint (i) obliges the relative efficiency of
each plant to be lower than or equal to the maximum
unitary value. Therefore, the solution obtained from
model (1) produces the set of weights most favourable to
plant j, with respect to the other plants, and the Ej value
obtained represents the maximum relative efficiency
obtainable. It is also evident that the overall performance
of the entire set of plants requires the resolution of a
model focusing on each plant in turn. As the cost function
may vary from problem to problem, weights obtained for
each plant may be different. Model (1) is fractional LP,
but it can be easily transformed into an LP one, as in
Charnes et al. (1978):

max Hj ¼
Xm

k¼1

�k ykj ð2Þ

subject to

Xn

i¼1

�ixij ¼ 1 ðiÞ

Xm

k¼1

�k ykj �
Xn

i¼1

�ixij � 0 for each DMU j ¼ 1, . . . , s ðiiÞ

�k � 0 k ¼ 1, . . . ,m ðiiiÞ

�i � 0 i ¼ 1, . . . , n ðivÞ

In fact, model (1) can be solved as an LP by setting its
denominator equal to some arbitrary constant and max-
imizing its numerator. The LP (2), or its dual version,
is commonly adopted in DEA applications reported in
the literature.

As a benchmarking approach, DEA has been proposed
in numerous different applications: banks, hospitals,
schools, technology selection, university departments,
no-profit organizations, etc. An excellent bibliography is
reported in Seiford (1996). In terms of performance eva-
luation of production systems, we can recall the studies of
Ross and Droge (2002) (distribution centres), Bowlin
(1987) and Clarke (1992) (maintenance activities),
Ross et al. (1998) (supply chain), Kleinsorge et al. (1989)

(logistics), Ito et al. (1999) (resource allocation),
Parkan (1991) (operational performance), Ray and Kim
(1995) (production cost efficiency), and Schefczyk (1993)
(industrial production performances).

It is evident that several applications of DEA concern-
ing different production efficiency aspects have already
been proposed in the literature. Nevertheless, they:

. have not considered the efficiency of production
systems in terms of technical and operative factors
as wide as this study;

. have not considered a wide range of factors in the
model (section 4);

. have often neglected the problem of the discrimina-
tion power of the DEAs (sections 6–8);

. rarely use the dual analysis of the DEA (section 10).

The following sections will highlight the contribution
of the present study in these fields. Moreover, it proposes
the utilization of cluster analysis with the aim of reassum-
ing and better estimating the various results (ranking of
efficiency) with different methodologies (section 9). In
this way, a more comprehensible and stable final result
of the analyses is presented.

3. The company profile

The company considered in the present study controls
more than 50 companies, with a consolidated turnover of
about 1.5 billion euros and 3,000 employees, working in
Italy and abroad in various manufacturing fields. The
core business is the production and sale of stainless and
carbon steels. About 40 productive units are located in
Italy and abroad, for a total yearly production of more
than 1,600,000 tons of steel, including 900,000 tons of
pipes (the largest fraction refers to welded pipes, about
one-third is dedicated to the production of coils, sheets
and bars, both hot and cold machined). Customers are
internationally distributed: the flexible production and
the extensive distribution system allow the company to
meet the requirements of even small enterprises.

4. Data selection

As mentioned before, DEA analysis is applied to the
five productive units of the primary company (here
defined as A, B, C, D and E) which represent its core
business. The analysis refers to three years: 1995, 1996
and 1997. The time interval considered has been set
according to the convenience of the company, together
with the availability of data. Seventeen different vari-
ables are identified as possible performance factors:
twelve of them are considered as outputs and five as
inputs.
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Outputs

(1) Produced quantity, expressed in tons per year.
(2) Scrapped quantity, expressed in tons per year.
(3) Operating index: represents the availability of the

plant for production, expressed as a percentage.
It can be calculated as the ratio between the
operating time (both plant and personnel avail-
able for production needs) and the calendar time
(given a plant with several productive lines, it
can be expressed, for example, as the number of
hours per month that the plant is open multiplied
by the number of productive lines).

(4) Idle time: represents the time associated with
unexpected breaks in production, because of
breakdowns, although the personnel are ready
for production.

(5) Utilization index: takes into account the time for
which the plant is strictly devoted to production.
It can be formulated as the ratio between the
productive time (both personnel and plant carry
out production tasks) and the operating time.

(6) Man-worked hours: represents the percentage of
man-worked hours, calculated with reference to
the entire amount of available hours (normal and
overtime).

(7) Actual plant productivity: expresses the ratio
between the produced quantity and the number
of operating hours of the plant.

(8) Actual worker productivity: expresses the ratio
between the produced quantity and the number
of man-worked hours.

(9) Raw material stocks.
(10) Work-in-process (WIP).
(11) Finished product stock.
(12) Absenteeism (%).

Inputs

(13) Number of employees: includes both direct and
indirect manpower.

(14) Average cost per employee: represents the expen-
diture for salaries per year.

(15) Overtime (hours per year).
(16) Number of staff personnel (not directly involved

in production activities).
(17) Investments.

Investments considered include the years 1993–1994, too,
because of their effect on the performance of the years
that follow. In fact, the effects of investments require an
opportune interval of time before showing their effects:
we have estimated that there exists a correlation between
the amount produced in one year and the economic
resources allocated in different successive years.

The choice of the produced amount as second variable
of correlation is based on the main investments of the
company: the largest part of the group investments are
devoted to increasing both production capacity and pro-
duction rates. According to the data of the five produc-
tive units, the strongest correlation is obtained by
considering a link between the produced quantity of a
specified year and the investments made two years in
advance: this concept will also be adopted to evaluate
the relative efficiency of a single plant.

Normalized indices for the five productive units in
three different years are offered in table 1. In some
cases, normalization has been carried out on the recipro-
cal of the value (e.g. scrapped quantity, as it is to be kept
as low as possible).

5. The standard DEA application

The application of the traditional DEA model (2) to
the group data for the 15 productive units leads to the
results shown in table 2. It is evident that an excessive
number of productive units reach maximum efficiency,
thus making the analysis in question useless. The discri-
minatory power of the final ranking generally represents
the main limit of DEA. The total weight flexibility char-
acterizing the LP (2) allows a high proportion of plants to
reach the maximum (or near maximum) value of overall
performance: this is due to the fact that the LP (2) states
that every criterion has a positive weight. Consequently,
a criterion can be ignored in the final assessment and,
frequently, productive units reach the maximum value of
relative efficiency only in virtue of an optimized set of
weights characterized by some other values equal to
zero. However, the generic weight can be interpreted as
a value of the importance that the DMU target assigns to
the corresponding input or output: assigning ‘zero impor-
tance’ to a criterion represents an unrealistic choice.
In this case, ‘false’ efficiency is detected (Baker and
Talluri 1997). Various solutions have been proposed to
resolve this problem:

(1) Whenever possible, a number of plants which is
almost twice the number of inputs and outputs
adopted is to be tested (Bowlin 1987). Thus, the
number of DEA degrees of freedom is reduced: it is
important to reduce the number of factors intro-
duced in the efficiency evaluation by also evaluat-
ing the eventual correlation between different
criteria (Kim and Hendry 1998).

(2) For each plant, the corresponding cross-efficiency
can be calculated, in place of the conventional
‘simple’ efficiency (Doyle and Green 1994).
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Table 1. Numerical data (monetary flows considered as absolute values, without inflation).

A95 A96 A97 B95 B96 B97 C95 C96 C97 D95 D96 D97 E95 E96 E97

Output
Produced quantity 1 0.854 0.977 0.064 0.071 0.084 0.080 0.114 0.168 0.107 0.100 0.126 0.288 0.313 0.349
Scrapped quantity 0.126 0.198 0 0.951 0.933 0.914 0.931 0.893 0.829 0.902 0.907 0.871 0.750 0.706 0.643
Operating index 1 0.945 0.996 0.648 0.700 0.764 0.241 0.232 0.348 0.744 0.560 0.687 0.672 0.739 0.731
Idle time 0.249 0.094 0 0.851 0.961 0.960 0.976 0.985 0.969 0.832 0.826 0.821 0.789 0.704 0.704
Utilization index 0.972 0.958 0.961 1 0.994 0.998 0.937 0.973 0.947 0.906 0.853 0.857 0.771 0.739 0.734
Actual plant productivity 0.177 0.142 0.149 0.036 0.184 0.199 0.610 1 0.920 0.149 0.192 0.227 0.702 0.624 0.716
Man productivity 0.360 0.240 0.280 0.080 0.080 0.080 0.640 1 1 0.320 0.320 0.400 0.480 0.440 0.520
Raw material stocks 0.548 0.545 0.513 0.994 0.991 0.979 0.202 0.533 0 0.921 0.970 0.950 0.872 0.864 0.873
Work in progress 0 0.163 0.339 0.943 0.950 0.899 0.997 0.980 0.988 0.916 0.935 0.914 0.794 0.785 0.839
Finished product stock 0.162 0.198 0.177 0.783 0.809 0.664 0 0.006 0.160 0.389 0.486 0.405 0.363 0.321 0.246
Absenteeism 0.126 0.094 0.186 0.140 0.091 0.233 0.147 0.016 0.215 0.176 0 0.302 0.170 0.129 0.177
Worked hours 0.927 0.959 0.939 0.939 0.954 0.954 0.948 0.860 0.961 0.937 0.944 0.956 0.938 1 0.936

Input
Number of employees 0.939 0.979 1 0.221 0.236 0.289 0.099 0.109 0.130 0.077 0.070 0.085 0.172 0.204 0.224
Personnel cost 0.838 0.900 1 0.192 0.209 0.260 0.088 0.096 0.113 0.069 0.070 0.081 0.148 0.177 0.210
Investments 0.641 0.412 0.612 0.313 0.129 0.171 0.071 0.103 0.173 0.026 0.063 0.184 0.225 0.243 0.212
Overtime 1 0.863 0.989 0.206 0.197 0.235 0.142 0.112 0.163 0.084 0.084 0.108 0.146 0.175 0.198
Number of staff/personnel 0.932 1 0.994 0.057 0.057 0.063 0.046 0.051 0.051 0.023 0.023 0.023 0.023 0.017 0.017
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(3) The stepwise approach may be adopted (Norman
and Stoker 1991).

Nevertheless, standard DEA results highlight two rela-
tively inefficient productive units (A and B). For the
first unit (i.e. unit A) inefficiency may be related to the
type of production carried out (the low productivity and
the presence of a large amount of personnel are justified
by the reworking cycles required). The second productive
unit (i.e. unit B) is the largest one in terms of produced
quantity (up to seven times the second largest one) and,
consequently, the 17 performance factor analysis had to
neglect some parameters, such as the net profit and the
production added value, because of industrial reserve. A
further consideration refers to plant A, which is the legal
and administrative unit of the company with a large staff
(more than half of the total personnel). This fact implies
that about 15% of the employees are involved in man-
aging and directional activities for the whole group of the
company plants. As a consequence, in the remainder of
the study, the efficiency evaluation will be carried out
neglecting the staff consistency, thus obtaining the results
shown in table 3 and adopted for further comparisons.

It is useful to point out that the productive units
achieving unitary efficiency are the same as those of the
previous analysis.

6. The reduction of factors

The discriminatory power of the DEA can be increased
by reducing the number of factors considered in the effi-
ciency ratio, taking care to avoid distortion in the out-
come of the results. A possible method is to reduce the
number of variables, according to their correlation factor
(Kim and Hendry 1998, Thanassoulis et al. 1987). A high
positive correlation between two factors means that each
one is well represented by the other one, i.e. both the
factors are so closely linked to each other that they
offer the same information and, consequently, one of
the two can be neglected. Thus, it is necessary to calcu-
late the pairwise correlation between the output or the
input factors, deleting those inputs and/or outputs which
are strongly correlated. Table 4 represents the higher
correlation coefficients.

Table 4 clearly shows how the produced quantity is
strongly linked to the scrapped quantity, the idle time

and the work-in-progress, thus encompassing the infor-
mation offered by these parameters and justifying their
suppression (e.g. Kim and Hendry 1998); i.e. the exclu-
sion of five factors is permitted (outputs: scrapped quan-
tity, idle time, work-in-process; inputs: average cost per
employee, overtime). Results are offered in Table 5.

Evidently, the reduction of factors considered in the
model must represent a correct compromise between
the increase of DEA discrimination and the loss of infor-
mation. For our scope, the DEA discriminatory power
has been sufficiently increased, thus avoiding a further
reduction of factors. Seven cases are still found to be at
the maximum of relative efficiency, but plant E is now
revealed to be inefficient in 1996 and 1997.

The reduction obtained is still limited, as both litera-
ture and experience suggest that the best results are
achieved when the DMU number doubles the number
of factors. However, attention is to be paid when suppres-
sing the parameters only on the base of the correlation
index datum. In fact, this information may not be mean-
ingful and it may lead to an efficiency concept signifi-
cantly different from the starting one. Therefore, results
obtained can be taken into consideration, but they must
be carefully estimated. For example, according to table 4
indications, two further parameters were eliminated
(i.e. actual worker productivity and investments) and
the results obtained radically contrasted with the
previous ones.

7. The cross-efficiency approach

So as to improve the DEA discriminatory power, an
alternative approach is represented by the cross-efficiency
(Doyle and Green 1994). Once the DEA model for a
particular plant has been chosen, the best set of weights
calculated can be used to weigh the inputs and outputs of
every other productive unit. Hence, a square matrix of
cross-efficiencies may be arranged, where the ith row
refers to the efficiency of each productive unit, calculated
according to the weights set for the ith productive unit,
and the kth column refers to the efficiency of the kth
productive unit calculated according to the weights set
for each unit.

The results of the cross-efficiency matrix may be
summed up by calculating, for each row i, the average
of its values, neglecting the value pertaining to the main

Table 2. The final ranking obtained by conventional DEA (model (2)).

Plant A95 A96 A97 B95 B96 B97 C95 C96 C97 D95 D96 D97 E95 E96 E97

Rank 0.713 0.714 0.670 0.815 0.853 0.694 1 1 1 1 1 1 1 1 1
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diagonal (average efficiency of units other than i evalu-
ated according to the set of weights most favourable to
the ith unit). The diagonal values Ejj correspond to the
traditional simple efficiency measurements for each plant
(obviously Ejj � Eij 8i). A similar average may be calcu-
lated for each column k, thus obtaining the average effi-
ciency of the kth unit according to the set of values most
favourable to the other units, i.e. the cross-efficiency of
the kth plant ek. The procedure allows the identification
of those units whose relevant efficiency is the consequence
of a choice of significantly unbalanced weights. To this
end, the ‘Maverick index’ Mj of the jth productive
unit may be useful, as it suggests the calculation of the
percentage deviation obtained when moving from the
traditional simple efficiency Ejj to the corresponding
cross-efficiency ej, i.e.:

Mj ¼
Ejj � ej

ej
� 100

A productive unit associated with a high value of the
Maverick index, when evaluated as efficient by the stan-
dard DEA approach, may be overestimated because of
poor discrimination. However, cross-efficiency limits are

evident when the choice of a set of weights is considered:
several sets may lead to the maximization of the efficiency
and the choice of one of these sets is a random process,
sometimes linked to factors such as the order of data
presentation or the steps of the algorithm adopted.
Doyle and Green (1994) suggest introducing, in addition
to the efficiency, a further objective function to be max-
imized or minimized. Two distinct approaches are avail-
able: the ‘aggressive’ and the ‘benevolent’ one. An
‘aggressive’ productive unit tends, at first, to maximize
its efficiency and then to penalize the other units’ effi-
ciency, minimizing them. On the contrary, a ‘benevolent’
unit tends to approach the other units’ efficiency, max-
imizing them. This procedure requires two distinct steps:

(1) Applying a standard DEA technique to maximize
the single unit efficiency (this is the one and only
target at this step).

(2) Solving an LP model with a new objective func-
tion that, once made conveniently linear by a proxy,
represents the average of the cross-efficiencies
obtained for the other units when ranked by
applying their own best weights. The target
obtained in step (1) is maintained by adding a

Table 4. Correlation index values.

Factors Correlation index value

Produced quantity ! Scrapped quantity 0.995
Produced quantity ! Idle time 0.963
Produced quantity ! Work-in-process 0.965
Scrapped quantity ! Idle time 0.970
Scrapped quantity ! Work-in-process 0.942
Idle time ! Work-in-process 0.928
Number of employees ! Avg. cost per employee 0.990
Number of employees ! Overtime 0.992
Avg. cost per employee ! Overtime 0.985
Actual plant productivity ! Actual worker productivity 0.895
Number of employees ! Investments 0.909

Table 3. The final ranking obtained by conventional DEA without number of staff/personnel.

Plant A95 A96 A97 B95 B96 B97 C95 C96 C97 D95 D96 D97 E95 E96 E97

Rank 0.817 0.713 0.760 0.722 0.754 0.581 1 1 1 1 1 1 1 1 1

Table 5. Final ranking with DEA after the reduction of factors.

Plant A95 A96 A97 B95 B96 B97 C95 C96 C97 D95 D96 D97 E95 E96 E97

Rank 0.817 0.708 0.760 0.557 0.588 0.415 1 1 1 1 1 1 1 0.924 0.974

548 M. Braglia et al.



further limit, namely, requiring that the efficiency
of the unit considered be equal to the one obtained
in such a step.

For further details of cross-efficiency, the reader may
refer to Doyle and Green (1994).

Table 6 offers the results obtained by the two methods
described, together with their averages. Plant D95 turns
out to be the most efficient one, also presenting the lowest
Maverick index: it remains the most efficient, but its
performance decreases both in 1996 and 1997. Unit E
has a high efficiency level, too (in 1995 it is superior to
D97) and its performance is more constant over time.
In the two last years considered, plant D saw a person-
nel reduction and a high plant utilization thanks to the
investments made. It is also affected by single product
manufacturing (high volumes and poor technology) with
limited added value. Investments in plant E aimed to
increase productivity and equipment utilization, acting
on a simple product-cycle with few operations. Unit C
performance collapses, showing how its performance
characteristics were unbalanced (its high efficiency was
a false indication, being affected by a chronic incapacity
to interact with the other units). Finally, plants A and B
confirm their basic inefficiency.

8. The stepwise approach

This approach (Norman and Stoker 1991) is based on
the assumption that there must be a number of factors
that are seemingly related to the concept of efficiency
that the model aims to evaluate (Kim and Hendry
1998). The starting point is the definition of a concept

of efficiency as the ratio between one single output and
one single input. The two-factor DEA model is imple-
mented and the ranking results are correlated with the
remaining performance criteria. The necessary condition
is that there exist a certain number of criteria correlated
with the initial definition of efficiency: the factor showing
the strongest link is suitable for a complete explanation of
the efficiency defined. The procedure is iterated until no
more factors show a strong correlation with the model.

The advantage offered by this approach consists in its
guaranteeing the presence of only those factors which are
able to explain the initial concept of efficiency (i.e. the
ratio between two initial variables), thus excluding the
over-abundant or distorting factors. The initial identifi-
cation of a two-factor significant efficiency is not an
immediate process: before implementing the model, it is
necessary to carefully analyse the situation and justify the
choices made. To overcome this problem, the analysis
started with the identification of three possible pairs of
input and output factors, i.e.:

(1) Produced Quantity/Investments: for the same
amount of material produced, the lower the invest-
ment, the higher the efficiency.

(2) Produced Quantity/Number of Employees: a lar-
ger quantity produced by a lower number of the
employees implies a better efficiency.

(3) Non-operating Time/Personnel Cost: increasing
the working time of the plant allows the reduction
of employees’ cost, thus increasing the plant
performance.

According to DEA results, the first ratio offered a per-
formance which is not strictly linked to the other para-
meters considered: the highest correlation index is limited

Table 6. Cross-efficiency results.

Plant

‘Aggressive’ method ‘Benevolent’ method Average

Cross-efficiency Maverick index Cross-efficiency Maverick index Cross-efficiency Maverick index

A95 0.232 2.524 0.575 0.422 0.403 1.026
A96 0.232 2.072 0.549 0.301 0.390 0.828
A97 0.226 2.367 0.543 0.402 0.384 0.979
B95 0.265 1.728 0.250 1.890 0.258 1.807
B96 0.317 1.380 0.294 1.567 0.305 1.470
B97 0.276 1.106 0.266 1.192 0.271 1.148
C95 0.394 1.537 0.471 1.123 0.433 1.311
C96 0.496 1.015 0.582 0.720 0.539 0.856
C97 0.534 0.873 0.691 0.447 0.613 0.633
D95 0.868 0.153 1 0 0.934 0.071
D96 0.686 0.457 0.893 0.119 0.790 0.267
D97 0.652 0.534 0.788 0.270 0.720 0.389
E95 0.602 0.661 0.879 0.137 0.741 0.350
E96 0.496 1.015 0.780 0.282 0.638 0.567
E97 0.500 0.998 0.806 0.241 0.653 0.531
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to 0.31 and this model was consequently abandoned. The
second model led to the calculation of a significant per-
formance value for each plant: paradoxically, the rele-
vant correlation with several other parameters does not
allow the augmenting of the limited DEA discrimination
(each time an attribute is added, a further one shows an
important link with the starting concept). This event was
recorded for 10 successive implementations of the model
and the resulting selectivity was so limited as to give nine
plants a performance equal to one.

In order to improve the effectiveness of the method,
the iterative process was suspended when, after adding a
factor, the average of the plant efficiencies increases by
less than 5%. Consequently, the process stopped after
three DEA implementations, i.e. after adding to the
initial ratio only two new parameters: the utilization
index and the actual worker productivity. Results are
shown in table 7 where only three productive units
score a unitary performance.

However, the four factors utilized may refer to a parti-
cular aspect of efficiency, which may not be relevant for
all the plants (some of them may dedicate resources to
other performance criteria, thus obtaining an overall
positive result). The technique roughly confirms previous
results: plant B presents a weak performance, plant A
gains a performance close to the maximum value (con-
ventional DEA showed how this plant assigns its highest
weights to the produced quantity and to the number of
employees, while plant B focused on finished product
stocks, absenteeism and overtime). The third concept of
efficiency was significant, too: it was possible to adopt the
conventional stopping procedure of the iteration process
(Kim and Hendry 1998), i.e. when the correlation values
between efficiency and the parameters not included in
the ratio is less than a set value (present case: 0.6).

Thus, the difference with the second concept is that no
stopping rule other than the correlation coefficient is
required to obtain an adequate selectivity. Four factors
were added to the initial couple: investment, number of
employees, produced quantity and utilization index.
DEA discrimination is rather sensitive (table 7) and,
also in this case, three plants show a unitary efficiency
(D95, D96 and E95).

9. Cluster analysis

The possibility of investigating the different DEA results
is offered by cluster analysis (e.g. Proth and Hillion 1990):
it also allows productive units to be grouped into homo-
geneous families and to analyse the behaviour of each
single plant over time. Cluster analysis is a technique
used to identify and group sets of data: objects pertaining
to groups may be both ‘cases’ and ‘variables’ and they
are grouped into homogeneous categories or families;
homogeneity definition depends on the criteria chosen
to measure the distance between the entities themselves.
Two well-known cluster techniques are hereafter
adopted: Hierarchical clustering and K-means clustering.

The entities observed are the plant observations: each
unit shows a set of results which defines the efficiency
value obtained by DEA implementation (for each pro-
ductive unit, these results could be different: tricks intro-
duced should be able to modify the performance concept
associated with standard DEA). Each plant observation,
i.e. each entity, is described by the following parameters:

(1) Standard DEA.
(2) Cross-efficiency averages, obtained by ‘aggressive’

and ‘benevolent’ approaches.
(3) Maverick indices referring to the average of the

two approaches (cluster analysis requires data
standardization: the Maverick index may be
greater than one and it must be normalized to
avoid its excessive weight in the distance calcula-
tion; however, the lower the index, the higher the
performance and, consequently, normalization is
carried out on the index reciprocal).

(4) The stepwise approach, starting from the ratio
between produced quantity and number of
employees.

(5) The stepwise approach starting from the ratio
between idle time and personnel cost.

(6) DEA relative to the reduction of four factors after
the correlation analysis.

The generic observation is an ordered vector of six ele-
ments obtained from each productive unit, e.g. according
to the previous data sequence, plant C95 observation is:

C95 ¼ ½1, 1, 0:8357, 0:9475, 0:4327, 0:2742�

Table 7. DEA final ranking after stepwise approaches starting
from two different efficiencies.

Plant

½Produced qty�

½No: employees�

½Idle time�

½Personnel cost�

A95 0.759 0.818
A96 0.625 0.708
A97 0.697 0.761
B95 0.575 0.366
B96 0.543 0.378
B97 0.357 0.303
C95 0.836 0.948
C96 0.799 0.880
C97 0.888 0.904
D95 1 1
D96 1 1
D97 0.988 0.985
E95 1 1
E96 0.907 0.925
E97 0.922 0.975
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9.1. Hierarchical clustering

The hierarchical cluster obtained by adopting
Euclidean distances leads to the dendogram represented
in figure 1: it shows how it is possible to identify each
cluster composition by successive steps (iterations). The
first column gives the productive units, as involved by the
software iterations, which are carried out by considering
the closest couple of clusters. The horizontal axis offers
the aggregation levels obtained at each iteration. The
highest level (i.e. 25) is linked to the situation of a unique
cluster encompassing all of the DMUs.

The dendogram of figure 1 shows how an aggregation
level equal to eight singles out three separate situations of
different efficiency. Moreover, figure 1 results highlight
the plant behaviour over time: movement from one
group to another suggests a certain degree of perfor-
mance diversity (even though not accentuated). Such
diversity may be positive (the efficiency is slightly higher
than the cluster average) or negative. For successive anal-
yses, the subdivision adopted is based on three clusters. In
this case, an acceptable variability of the values within
each cluster was recorded.

The average of the efficiency values of the three clus-
ters indicates that one cluster offers high performances, a
second one is associated with intermediate performances
and the last one, in each phase, to relatively poor perfor-
mances. Data shown suggest the grouping of D, E and

C97; only at a low aggregation level (six clusters) D95
parts to create a unitary cluster. Referring to interme-
diate aggregation, plant A is grouped together with C95
and C96: this aggregation is not very robust, as at the
level immediately below plant C emerges, thanks to a
superior overall performance.

Plant B has always been the least efficient plant and the
hierarchical analysis leads to a specific cluster including,
at each level, all of the corresponding units: a six-group
configuration leads to B97 separation because of an
efficiency value lower than the two preceding years.

Generally, observations of a single plant over various
years appear in the same cluster, exceptions being C95
and C96 (cluster 1, i.e. intermediate performance) while
C97 belongs to cluster 3 (highest efficiency units). The
shift is related to a produced quantity increase of about
40%, thanks to investment focused on better utilization
of equipment and greater number of worked hours. The
positive effects of these and further investments were
detected, as expected, in the successive years.

9.2. K-means clustering

The hierarchical analysis suggested the grouping into
three clusters: on this basis, the K-mean analysis is
carried out, calculating the distances between the group
centres (i.e. barycentres). The distance of each plant

Figure 1. Dendogram of the hierarchical analysis referring to a maximum number of six clusters.
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from the barycentre of its own cluster is shown in table 8
(for the distances evaluation see, for example, Proth and
Hillion 1990): the higher the distance, the higher the
possibility that the observation will leave the group at
the aggregation level immediately below. For example,
C95 and C96 appear in a position sufficiently far from
their cluster centre, especially when compared to the
other units of the cluster itself (the previous hierarchical
analysis showed how the two units above, at the aggrega-
tion level immediately below, form a cluster indepen-
dently from plant A). The same can be said for D95
(third cluster) and B97 (second cluster). However, in
the case of D95, C95 and C96 the greater distance indi-
cates a slightly higher efficiency with respect to the other
plants; the opposite is true for B97 and A96.

The K-means analysis also allows the calculation of the
cluster barycentre: in the case under examination, this
point pertains to the six-dimension space R6 and its
coordinates are a vector whose components represent
the average of the efficiency values obtained by the
plants pertaining to the cluster (table 9): naturally,
these components are highest for the third cluster.

Table 10 shows the distance between the barycentres:
the closest clusters are the first and the third ones,
whilst the second is more distant. Once again, this fact
highlights the inefficiency of plant B.

In conclusion, K-mean cluster analysis allowed the
identification of three separate clusters, characterized
by different efficiency levels, thus confirming via math-
ematical tools the observations made by the different
DEA applications. It also made it possible to focus on
the different behaviour of the plants over the three-year
period analysis.

10. Economical analysis

The previous analyses may offer useful indications to
the company management. The most relevant aspects
concern (i) the identification of the input/output vari-
ables that must be changed to allow inefficient plants to
reach a unitary performance and (ii) the required range
of these changes. In particular, it is important to quantify
the minimum modification of the input factor leading to
the maximum relative performance. This kind of analysis
allows the identification of parameters that are lacking
with respect to the alternative ones and it may be solved
by the DEA dual model (e.g. Braglia and Petroni 1999).

In the present case, the analysis of duality was carried
out with reference to the stepwise approach, which
explained efficiency by five factors (two outputs and
three inputs) and led to the identification of three plants
with a unitary efficiency (D95, D96 and E95). This
approach emerged as the best compromise between

discriminatory power, significance and number of per-
formance parameters considered.

Table 11 shows the percentage variation that the fac-
tors in question should undergo in order for the plant
to be considered efficient, reaching a unitary relative
efficiency. Actually, there are infinite combinations of
parameters leading to the result, as both a further input
reduction or an increased output may strengthen the
performance.

In table 11, the simple numeric value has no significant
interest: the dual problem offers good indications as to
which parameters are worthy of intervention, rather than
the entity of their modification. This is the case of plant
A95: to reach a unitary efficiency, this plant should man-
ufacture the same quantity of finished products while

Table 8. Distance of each DMU from the centre of its
own cluster.

Case number Plant Cluster Distance

1 A95 1 0.075
2 A96 1 0.298
3 A97 1 0.178
4 B95 2 0.211
5 B96 2 0.116
6 B97 2 0.276
7 C95 1 0.307
8 C96 1 0.289
9 C97 3 0.187
10 D95 3 0.281
11 D96 3 0.109
12 D97 3 0.036
13 E95 3 0.059
14 E96 3 0.160
15 E97 3 0.110

Table 9. Cluster centre components.

Cluster

1 2 3

Reduced DEA 0.85734 0.520333 0.985571
Total DEA 0.85828 0.686329 1
Cross-efficiency 0.429881 0.277929 0.726793
Maverick index 0.446398 0.183603 0.777988
Stepwise b 0.74292 0.4915 0.957829
Stepwise c 0.85296 0.3678 0.978486

Table 10. Distances between cluster centres.

Cluster 1 2 3

1 – 0.730673 0.54459
2 0.730673 – 1.208308
3 0.54459 1.208308 –
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cutting the investment by 19%, reducing personnel by
19% and reducing the idle time by 96%. This situation is
clearly associated with excessive variations of the param-
eters, this also being a consequence of the five-factor
approach. In reality, there are other factors on which it
is possible to act in order to reach the unitary relative
efficiency, without adopting such a dramatic interven-
tion. Of the five parameters considered, the dual analysis
highlights the most critical ones and, consequently, those
suitable for intervention. According to these concepts, it
is possible to state that D95, D96 and E95 do not require
any factor modification. In the three years considered,
plant A’s most critical parameter is the idle time, which
is also the consequence of the company strategy to privi-
lege the flexibility of this plant, so as to promptly reply to
every market requirement, and consequently incurring
notable set-up times. The same is true for E96 and E97,
together with the need for a limited reduction of the
inputs (e.g. reduction of personnel cost of 9%). Plant B
showed a low efficiency which determined a significant
decrease in inputs. Over the three years considered, the
idle time is a sufficiently utilized factor, while the low
quantity produced requires an increase (this performance
is strictly linked to the kind of production, i.e. stainless
steel welded pipes).

11. Conclusions and remarks

A relative evaluation of the performances of different
plants of the same company was proposed, according to
Data Envelopment Analysis (DEA). Operative data from
five plants were analysed over three years, adopting sev-
eral variants of the conventional DEA technique: factor

reduction, cross-efficiency and stepwise approach. A clus-
ter analysis allowed the grouping of data, thus identifying
three separate groups characterized by different effi-
ciency levels and offering a mathematical validation of
the results obtained by the different DEA applications.
This approach also allowed the critical analysis of each
plant performance over the three-year period in question.
The dual analysis of DEA offered a series of economical
considerations on the results obtained.

It can be stated that DEA application to a wide set
of data may be extremely positive in industrial cases. In
fact, both efficiencies and inefficiencies detected have
found a positive confirmation in the typologies of the
productive systems and in the strategic choices made by
the management. The analyses could offer further
results of great interest to industry if other parameters,
e.g. product added value and net profit, are included in
the analysis. The economic analysis carried out clearly
addressed the parameters worthy of attention in favour-
ing plant efficiency. In this case, too, a confirmation
was detected with reference to the industrial case under
consideration.

Finally, we would like to discuss a problem that could
be considered as a limitation to this approach. The ques-
tion concerns the absolute performance level of the best
plants in the company. A reader could observe that the
plant characterized by a unitary efficiency (obtained
from the relative ranking of the company’s plant) could
not be, in the same way, particularly efficient in absolute
terms (i.e. if compared to plants of other companies).
Therefore, it could be asserted that the DEA’s results
are useful only for well-operated companies where the
expected performance level of the best plant is recogni-
zed as being a priori very good. In the same way, for a

Table 11. Percentage variation of factors considered obtained by dual analysis.

Output increase Input decrease

Plants Efficiency Idle time
Produced
quantity Personnel cost Investments

Number of
employees

A95 0.817 96.20 0 19.36 18.25 18.25
A96 0.708 97.32 0 31.07 29.18 29.18
A97 0.760 97.34 0 32.74 23.92 23.92
B95 0.366 0 71.56 63.40 91.65 64.71
B96 0.377 0 73.74 62.22 77.16 62.74
B97 0.302 0 47.14 69.71 82.74 69.84
C95 0.947 0 56.24 5.25 57.82 5.64
C96 0.880 0 11.02 11.97 70.46 13.58
C97 0.904 0 0 9.56 56.12 10.74
D95 1
D96 1
D97 0.984 0 0 1.53 54.43 1.53
E95 1
E96 0.924 48.47 0 7.82 7.55 7.55
E97 0.974 67.88 0 8.95 2.55 2.55
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poorly-operated company, generally characterized by
inefficient plants, the DEA analysis could be useless. In
such a situation, every plant needs to be improved, i.e.
also the plants showing efficiencies equal to one. To over-
come this limitation it is possible to introduce a fictitious
series of references characterized by excellent values in
terms of inputs and outputs considered. For example,
it is possible to create this fictitious plant assigning each
input and output variable the best values obtainable
from the set of plants under analysis (e.g. characterized
by the highest volume produced, the lowest scrapped
quantity, etc.). Alternatively, it is possible to create
ex-novo a fictitious plant where the inputs and outputs
represent the desired values of the management. In this
way, the plant of reference turns out to be the only
one characterized by a unitary efficiency while all the
other plants show various inefficiencies that must be
solved. In the industrial case reported here, this approach
was not required in virtue of the recognized high opera-
tive levels distinguishing the best plants of the company.
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